

Table of Contents

	Foreword

	On The Theory Behind Programming

	Of The Workings Of Devpac 3 And The Realisation Of Some Code

	Of Various Things Mystic And Important, Mainly Concerning The Art Of Understanding Digits And Performing Traps

	Of The Ways Of Addressing Memory

	Of The Workings Of The Graphics Memory And Minor Skills In Branching

	Of Seeing Behind The Curtain Of An Execution And Getting Intimate With Files

	On Scrollers

	Of Scrolling 8 Pixels Per VBL Using Double Buffer

	Of Revealing The Unseen And Expanding Our Consciousness Without The Use Of Illegal Drugs

	Of Lighting A Candle (And Casting A Shadow)

	Of Making The Mountain Move To Mohammed

	Of Controlling The Puppets

	Of Hearing That Which Is Spoken

	Of Using The Gramophone

	On Fading To Black

Foreword

 This document is a compilation and formatting of a set of tutorials created by perihelion with
the intention to start people in the "art and science" of coding the Atari ST series of
computers in assembly, one of the more popular programming languages especially for
games, demos and other hardware-intensive applications.

Sadly Andreas Wahlin aka. perihelion left us 2007, but his legacy lives in the
form of the best modern tutorials to learn M68000 assembly on the Atari ST.

For the sake of convenience, some very useful texts were added as appendixes, and due
credit was given where possible. There are still some authors lacking for a few, so please, if
you know who has written any of the un-credited appendixes, please open an issue
on GitHub.

While many people contributed with comments, suggestions, criticism and general incentive,
some have been of special help, so perihelion would like to thank:

	
Lars Lindblad, for suggesting it in the first place.

	
Bruno Padinha (bp, http://stgameslist.atari.org) for critique and assistance extraordinaire.

	
Marten Maartens (ST Graveyard, http://www.atarilegend.com/) for nice words and providing perihelion with a canvas.

	
Torsten Keltsch (mOdmate/Checkpoint, http://membres.lycos.fr/abrobecker/STart/mOd/mOd.html), for support in perihelion early times.

On The Theory Behind Programming

 2002-04-07 (last edition of the initial revision)

Conan, what is best in life?

To crush your enemies, see them driven before you, and to hear the lamentations of their women.

~ Conan the Barbarian

Hi everybody! This is perihelion of poSTmortem (aka Andreas Wahlin) writing. Me and
Aldebaran (aka Lars Lindblad) have just started this little project of ours: the demo group
poSTmortem. As a first step towards actually doing something with the ST, we thought that
writing a tutorial might be good. In this way, we can teach ourselves and you (whoever is
listening).

This tutorial is aimed at people who, like ourselves, want to learn to code assembler for the
Atari ST. What? You say, this is the year 2002, why on earth would you want to learn how to
code, for one thing, assembler, and assembler for the Atari? You must be crazy. Well, you
might think the Atari is dead, but we say it survived itself, it has risen again, it is:
poSTmortem (totally lame, right?). You don’t need any programming skills, although it might
help since learning to code from assembly language is probably quite suicidal in a
pedagogical view. I’ll try to cover the basics of general programming and setting you up in
this tutorial, and in part two we will do some rather simple program to get things started. I
will however, assume that you have some basic skills in Atari management, like file copying
and so on. Also, I will assume you have a real Atari, emulating might work fine, but nothing
beats the real thing.

What is programming? Programming is the art and science of making the computer do what
you want it to do. BTW, programming is also known as coding, I will use these two terms
somewhat mixed probably. So, how do we do that? By telling the computer what to do, and
then do it. Since you don’t have shit for brains, you will know that when you double click on a
.prg file (known as .exe files on a PC), the computer will do stuff, like running a game. So,
what if we could create our own .prg files…​ Yes, we can do that, this is where you’ll learn
how!

Every computer has a memory, this is where the number on your Atari is derived from, 520
have half a Meg (short for Mega Byte) of ram, and 1040’s have one Meg. Your usual PC these
days have about 256 megs of ram, Bill Gates once said "nobody needs more than 640 K ram"
(about the memory amount of an Atari 520). If these numbers confuse you, do not worry,
they aren’t important right now. The memory is very temporary; it gets wiped out every time
you turn off your Atari, unlike diskettes (thank God). When you run a program, the computer
loads the program into memory, and then executes (follows the instructions given by the
program).

Every area of the memory has an address, so you know where you are. You can think of
these addresses as normal street addresses, but perhaps it would be better if you thought of
them more as page indexes in a book. Every page is filled with information on how to act. So,
let’s assume that we have a monitor capable of displaying one of two colours, either black or
white. The memory address $20 holds this colour. 1 means black, 0 white. If memory looks
like this, we get a black screen.

	Address
	Value

	…​

	

	$19

	12

	$20

	1

	$21

	67

	…​

	

	(each address can hold a number between 0 and 255)

To understand a bit better about memory, because this is very important, we expand our
little example. There is an area in the memory reserved for the user. This area is just for
information storage, and does not affect the hardware. Let’s say that the monitor is capable
of displaying text as well, the text is also either black or white as previously stated, and the
information on the text colour is to be found at $21. Further, the address $22 holds a pointer
to the text to be displayed. Pointer? Argh! Well, it’s really quite easy, a pointer is a reference
to another part of the memory. Show first, talk later.

	Memory
	Value

	…​

	

	$19

	12

	$20

	1

	$21

	0

	$22

	101

	…​

	

	$101

	Hello World!

	$200

	DOH!

	…​

	

In this example, the "user memory" begins after position $100. All address positions $0 -
$100 do something with the hardware in some way, but after that, it’s just storage space.
With the above values, and given our premise, the text "Hello World!", will be displayed in
white text on black background. Let’s say we were to change the values to this instead.

	Memory
	Value

	…​

	

	$19

	12

	$20

	1

	$21

	1

	$22

	200

	…​

	

	$101

	Hello World!

	$200

	DOH!

	…​

	

	(changed values at $21 and $22)

We would get the text "DOH!" written in black text on black background, not too clever.
Therefore, a pointer is a reference to another place. Because $22 only can hold numbers 0 -
255, the text "Hello World!" would never fit, so instead we point to an area in the user
memory, which can hold much more than just a number between 0 - 255. Are you beginning
to grasp how computers work?

If you have an enquiring mind, and I hope you do, you’ll probably wonder why the addresses
$0 - $100 only hold numbers, while it seems that addresses $101 - …​ can hold letters. The
answer is, they actually can’t hold any letters. In addition, it doesn’t quite look like I’ve shown
you either. This might get somewhat complicated, hold your hat and don’t cry if you don’t get
it. Just read it, let it go, meditate a bit and you’ll reach enlightenment.

The addresses $101 and $200 actually only hold numbers, but the computer has a decode
key so that each number can be decoded to a letter. Let’s say that

! = 0
A = 1
B = 2
C = 3
D = 4
...

and so on, then it really looks like this

	Memory
	Value
	Meaning

	$200

	4

	D

	$201

	15

	O

	$202

	8

	H

	$203

	0

	!

	…​

	
	

So you see, there are just numbers, also, as I said, each address can only hold a number
between 0 - 255, meaning that each letter is held in one address. But but but but, why
doesn’t more stuff get displayed as text? Why does it stop at $203? The memory must
continue after that surely. Let’s look at this memory setup.

	Memory
	Value
	Meaning

	$200

	4

	D

	$201

	15

	O

	$202

	8

	H

	$203

	0

	!

	$204

	15

	O

	$205

	4

	D

	…​

	
	

The text on the screen would display as "DOH!OD" and probably much more (the rest of the
memory in fact). Well, here we use a control number, let’s say that the computer knows that
when in reaches the number 255 the text ends there. If memory looks like this:

	Memory
	Value
	Meaning

	…​

	
	

	$19

	12

	something

	$20

	1

	background colour

	$21

	0

	text colour

	$22

	200

	pointer to text on screen

	…​

	
	

	$200

	4

	D

	$201

	15

	O

	$202

	8

	H

	$203

	0

	!

	$204

	255

	end of text

	$205

	4

	D

the text "DOH!" would be displayed in white on black background. When the computer
reaches $204, it sees the number 255, which means stop displaying text, so the letter (or
rather, value) at $205 and following addresses will not be displayed. Like I said, this may be
a bit advanced, don’t panic. We will get much more concrete in tutorial 2. I just want you to
have a theoretical basis so you know what’s what and so you can refer back to this. Just let
this sink into your unconscious, when the time is right and you have correct understanding, it
will surface and you will get it.

Now, for the last theory lesson: how do you actually make something happen? As we know,
there are .prg files that make stuff happen. With our above knowledge, we know that they
affect memory. We can write down simple commands in a text file, and then have that text
file translated into the .prg format, so that the computer will understand what we say. A
program that can pull this off is known as a compiler, a compiler usually comes with a text
editor, suited for programming needs. The text file you use to create a .prg file, is known as
the source code. Let’s take another example, this time let’s assume we wrote this source
code.

Put #1 at $20
Put #0 at $21
Put #200 at $22
Put #4 at $200
Put #15 at $201
Put #8 at $202
Put #0 at $203
Put #255 at $204
Initialise monitor

Now, as you can guess, # stands for value, a numerical value in our case, and $ stands for
address. Now, if we compile this source code, that is, translate it to a format the computer
understands, we will get a .prg file. When we double click on that file, the computer will do
what it says above: the different values will be loaded into the different addresses, creating
the memory profile given above. The last line "Initialise monitor" is for engaging the monitor.
When the monitor is engaged, the Atari knows that it should look at $20, $21 and $22 to
gather the data needed. So instead of "Initialise monitor", perhaps we could’ve written

Activate $20
Activate $21
Activate $22

Because what we really want to do is to make the information on these addresses happen;
we want the computer to process the information given. This is long and clumsy however,
and the line "Initialise monitor", or whatever you might call it, is far simpler.

The computer, internally, understands nothing but 1’s and 0’s, all text and numbers I have
given above is for human understanding (more on binary understanding later). Also, none of
the commands or memory addresses have any significance for the Atari, they are examples
only.

OK, theory lesson over. Hope I haven’t scared you away. In the next tutorial we will get into
how to actually make a .prg file. It won’t do much, but at least you will get to see your code
in action.

Of The Workings Of Devpac 3 And The Realisation Of Some Code

 2002-06-14 (last edition of the initial revision)

No immovable roots, no stirring of dust, only the tao; the way of
nature. This is called tai chi.

~ Tai Chi Master

Hello again. It’s only been some days since the last tutorial, but I’m bored right now and I
don’t have any computer game I feel like playing. This weekend went great, as it was
GothCon (game convention here in Göteborg, Sweden) which meant games were afoot. I met
Aldebaran for the first time IRL and he demonstrated the game Illuminati, which I plan to
play later on this evening. But you don’t really want to listen to that, do you?

In the last tutorial, we went through some basic theory behind programming, and now we
are going to put that theory into practice. We want to do something so awfully cool as to
change the background colour to something else. First, we need to gather and learn how to
use the tools. The tools in this case are only one; Devpac 3.00 by HiSoft. It can be acquired
from Pompey Pirates CD #114, other places, or perhaps you can even buy it :)

Once we start up Devpac, we want to change some settings to make our lives easier. Go into
options - control, under the setting format, select ST RAM, depending on your memory size,
you may also wish to change the memory buffer. The only two interesting settings here are
ST RAM and Atari Executable. If you choose Atari Executable, you will get a .prg file every
time you assemble (also known as compile) your source code, so in order to test your source
code, you will have to quit Devpac, and run the .prg file, then start Devpac again;
enormously clumsy. Instead, we put the .prg file directly into the ST RAM (memory, RAM
stands for Random Access Memory), from where it can be executed directly. So for now, set
the setting to ST RAM. It’s only when you are done coding something, that you will want to
change this setting to Atari Executable in order to get a normal .prg file. Go into options -
options, and uncheck the "Check absolutes for missing #". This eliminates lots of error
reports than usually aren’t error reports. In the options - environment you can set the
environment variables, if you run from diskette, they should probably be something like
PATH=a:\bin,INCDIR=a:\incdir. Go into options - resident and make sure both Assembler
and Debugger are checked, this will also save you lots of time if you have the memory (since
I run on 4 megs, I don’t have to worry). That’s about it I think, you can play around with
settings on your own if you like, but these are essentials in my opinion.

OK, we have our environment (Devpac) correctly configured, now we want to do something.
Remembering the past lesson, we soon realize that to change the background colour, we will
have to know what controls the background colour. On the
Hardware Register Listing, by Dan Hollis,
you’ll find a listing of the ST’s memory, great for reference, in it we find the following lines:

	$FF8240

	word

	Video palette register 0

	R/W

	…​

	…​

	…​

	…​

	$FF825E

	word

	Video palette register 15

	R/W

As you may know, the ST is capable of displaying 16 colours at once, with a palette of 512
colours. Having a palette means that you don’t have to stay with 16 fixed colours, by
changing the palette you can, say have 16 hues of red, and then 16 hues of blue on the next
screen. Imagine an artist that can only have 16 colours on each of his paintings, however, he
doesn’t have to stick with the same 16 colours each time. OK, it seems that the first colour
starts at $FF8240, this is indeed colour 0 and it’s the background colour, so by merely
changing the value here, we should change the background colour.

I talked about palettes just now, the ST is built on what you call RGB, Red Green Blue,
colour. Every colour is made up of 8 levels of Red, Green and Blue, because the computer
always counts from 0, the range is between 0 - 7. 8 × 8 × 8 = 512. So, the colour $700
would mean as red as you can get (maximum value of Red, zero value of Green and Blue).
$770 would be yellow, $777 would be white and $000 would be black. Equipped with this
knowledge we enter this single line as our source code

 move.w #$700, $ffff8240 ; red background color

Move is the command used for moving values around other values, in this case, we move the
value #$700 into memory position $ffff8240. The # indicates that what comes after is an
absolute value, and the $ means that the value is hexadecimal, instead of decimal (more on
this later, accept for now). The .w after the move instruction means that the move instruction
should move a word, indicating the size of the thing you want moved (more on this later also,
accept for now). So, the line above means in clear (?) English; move a value of word size, an
absolute value expressed as a hexadecimal value 700 into the memory address $ffff8240.
This should be enough to change the background colour to red.

Now we want to assemble the source code, and get our executable. Short command for this
in Devpac is ALT+a. Now, a window will pop up, displaying some statistics, what we want to
search for is especially the line "0 errors found". If there are errors found, the pointer will
automatically move to the error so that you can correct it. By pressing ALT+<number>, you can
cycle through the available windows. So, if you do get an error, but you don’t understand it,
press for example ALT+2, which will take you to the second window, where the error report
probably is, try to understand something, then hit ALT+1 to go back and edit your source
code. CTRL+w will close a window. Okie dokie, the source code has compiled successfully,
now we need to run it; hit ALT+x (eXecute). Now you will be asked to pass parameters to
the program, don’t, just hit enter. Oh, the expectation, will the background change to red?

NO! We get two fucking bombs for all our effort. What the fuck? Is there anything wrong
with the source code, no, it seems not. Is there anything wrong with the address? Double-
checking the address value, no, $ffff8240 means colour 0, which is the background colour.
Well, the ST can operate in two modes, user and super mode. In the user mode, we aren’t
allowed to access certain things in memory, for example the palette, the result if we try to do
this is two bombs. So we need to go into super mode. Referring to a list of the so called trap
functions of GEMDOS, ideally the ST Internals, we find out how to enter super mode, the
code looks like this:

 clr.l -(a7) ; clear stack
 move.w #32, -(a7) ; prepare for super mode
 trap #1 ; call gemdos
 addq.l #6, a7 ; clear up stack
 move.l d0, old_stack ; backup old stack pointer

(ok, so the code looks somewhat different than in ST Internals, a good lesson for you that
you can write differently, but still achieve the same)

Perhaps I shouldn’t go too deeply into this, it will come in the next tutorial where I’ll take up
the different registers and talk about traps and so on. For now, you’ll just have to accept it,
but for you curious types, here’s a short one. The GEMDOS has several special functions,
which are accessed by the trap #1 command (calling trap #13 calls BIOS functions). The
controlling value is put on the stack, which is address register a7 (you can also type sp, short
for stack pointer, instead of a7). The move.l d0, old_stack is for backing up the old user
stack, which gets replaced when we go into super mode.

This code obviously goes at the top of our source code, the first thing we want is to go into
super mode, then we put red colour in palette register 0, lastly, we want to go back into user
mode and also add another two lines of "accept now, understand later" code, which will make
a clean exit of the program. The total code looks like this:

 clr.l -(a7) ; clear stack
 move.w #32, -(a7) ; prepare for super mode
 trap #1 ; call gemdos
 addq.l #6, a7 ; clear up stack
 move.l d0, old_stack ; backup old stack pointer

 move.w #$700, $ffff8240 ; red background color

 move.l old_stack, -(a7) ; restore old stack pointer
 move.w #32, -(a7) ; back to user mode
 trap #1 ; call gemdos
 addq.l #6, a7 ; clear stack

 clr.l -(a7) ; clean exit
 trap #1 ; call gemdos

old_stack dc.l 0

Running this program will successfully change the background colour to red, and then make a
nice and clean exit, restoring the Atari to user mode once again.

[image: tutorial 02 screenshot]

Figure 1. Red background

Problem is, we now have a red background. Not to good you might think. This can be easily
remedied however, we have made a program that changes background colour, let’s use it!
Change the value $700

Of Various Things Mystic And Important, Mainly Concerning The Art Of Understanding Digits And Performing Traps

Of Various Things Mystic And Important, Mainly Concerning The Art Of Understanding Digits And Performing Traps

 2002-06-14 (last edition of the initial revision)

With your ability, if you learn to be fluid; to adapt. You’ll always
be unbeatable.

~ Fist of Legend

Hello again! I’ve gotten some positive feedback on the first two
tutorials, so I’m glad to begin writing this third one. As promised,
I’ll try to explain how computers think when it comes to numbers, the
layout of the Atari hardware which will guide us to the workings of
traps. I bet a very few understood anything about that.

So, now I’ll try to explain what may have been a bit lofty in the
previous two parts of the tutorial: how we express numbers. When you see
three rocks, you count them, one, two, and three. We have speech in
order to communicate our thoughts and emotions to other people, and we
have writing in order to communicate speech in written form. We use
numbers to communicate "counting". We have chosen the symbol '3' to
express the amount you reach when counting one, two and three. However,
this value, this "there are three things of something", can of course be
written in different ways.

Our number system is based on base 10, meaning that we have ten
different symbols to express values, one of them being no values (also
known as zero), which leave us with the ability to count to nine. Once
the number nine has been reached, we need to start using numbers over
again, we don’t have a symbol for the value ten, so we have to combine
the numbers we have in some way in order to express this. What we do is
to say that different positions are "worth" different. For example, in
the expression 23, the number 2 is worth ten times as much as three. Do
we see a connection here? We use base 10, each number is worth ten times
as much as its predecessor. In the expression 123, 1 is worth ten times
as much as 2, and one hundred times as much as 3. To calculate the value
of the expression 123, we really use this formula:

(1 × 102) + (2 × 101) + (3 × 100)

The generic formula looks like this:

∑ × value × baseposition

OK, you say hesitantly, perhaps I understand something of what you’re
trying to say; now what about computers? Computers use base 2, they are
binary and can only count 1’s and 0’s. There is either current through a
circuit, or there isn’t. They only use two symbols to express values. As
you can imagine, the result is very long expressions, like

	
For presenting the value three, the computer uses the symbols

	
Using our generic formula above, we translate this to:

(1 × 21) + (1 × 20) = 3

For expressing the number five, we would get 101:

3 Of Various Things Mystic And Important, Mainly Concerning The Art Of
Understanding Digits And Performing Traps

1 + 0 1
1 × 2^2 + 0 × 2^1 + 1 × 2^0 = 5
4 + 0 + 1 = 5

Think of it as tumblers, when we have base 10, the tumbler starts at zero, makes nine
"ticks", then the tumbler directly to the left makes one tick displaying one, the first tumbler
reaches zero again, makes nine ticks, the left tumbler makes one tick, reaching two, the first
tumbler starts at zero again. When the second tumbler is at nine, and the first tumbler is also
at nine, the next tick will take both tumblers back to zero, and a third tumbler, the one
directly to the left of the second tumbler, will go from zero to one, and so forth. If we have
base 2, there are only two numbers on the tumblers, 1 and 0.

In order to facilitate things, we also have base 16, or hexadecimal numbers. The reason for
this is that conversion between decimal (base 10) and binary (base 2) numbers are
somewhat cumbersome, while conversion between hexadecimal, or hex for short (base 16)
and binary is fairly easy. We use binary because the computer thinks in binary, we use hex
because it’s easier to convert binary into hex rather than decimal, and hex is much more
manageable (less symbols required to express the same value), and of course we use decimal
because we think in decimal.

If you’ve understood what I said above, you’ll wonder how on Earth we use hexadecimal
values, since we would need six more symbols for expressing the values ten, eleven, twelve,
thirteen, fourteen and fifteen. We simply use letters from our alphabet. A = ten, B = eleven,
C = twelve, D = thirteen, E = fourteen and F = fifteen. So to express the value fifteen in hex,
we simply use F. To express sixteen, we get 10 (1 x 16^1 + 0 x 16^0). Seventeen is 11 (1 x 16^1
+ 1 x 16^0. AF would mean one hundred and seventy five (10 x 16^1 + 15 x 16^0) and finally
F5A would be three thousand nine hundred and thirty (15 x 16^2 + 5 x 16^1 + 10 x 16^0). If you
don’t get all this, this topic will probably be covered by every beginner’s book and tutorial out
there, go find an additional source of information.

In Devpac, values are expressed by putting # in front of a number, then further using $ or
% before numbers to indicate hexadecimal or binary numbers. Thus, # means decimal, #$
means hexadecimal value and #% means binary value. So, as you see, it’s customary to
express memory addresses in hexadecimal. $ (without #) means value at memory address.

Huh, that was that, now onto the architecture of the Atari! Every computer comes with a
processor of different (or similar) brands, the Atari has a M68000 processor, so does the
Amiga 500. The PC has an 8086 and so on. The processor comes with a different set of
instructions and ways of working. This is the real challenge of assembly programming, you
must know how the processor behaves that you are trying to program. In high level
languages, such as Pascal and C, the programming language usually handles the processor
dependent parts, and the code is much more portable between different platforms
(computers). Assembly programming however, deals with processor level instruction, which
makes it much more powerful and controllable. What the high level languages do, is to take
the source code and "translate" it into low level (assembly) language, which of course brings
waste, since we can tailor make our programs in assembly, while high level languages have
to be more generic (since they weren’t tailor made for a specific processor).

This is a good time to take a look at the Motorola 68000 Instruction
Set which contains a set of M68000 instructions, you will need to refer to these, also a good
guide to the ST’s hardware would be most useful, the ST Internals for example (as a
somewhat more basic alternative, you’ll find such a list in the
Hardware Register Listing, by Dan Hollis). In
order to explain the GEMDOS trap routine we used in the last tutorial, I’ll have to explain registers.
The M68K (K here stands for kilo, meaning 1000, thus M68K and M68000 are synonyms) has 16
registers plus one extra: eight data registers and eight address registers plus a program counter.
The program counter is really an address register that points on the next instruction to be performed,
simply put, it keeps track of the program execution so that the Atari knows where it’s at.

The eight data registers work as eight variables that can store data. The eight address
registers are used to store addresses, addresses work like pointers to larger chunks of data,
as explained in tutorial one. Here is a usage example of the data register.

 move.w #10, d0 ; put value 10 into data register zero
 move.w #5, d1 ; put value 5 into data register 1
 add d1, d0 ; adds d1 to d0 and stores value in d
 ; d0 now holds value 15

The address register seven (a7) is worth special mention, this is the so called stack. The
stack is a lovely pile of data that is used in many ways, for example by the trap instructions.
It’s of special importance to the PC programmer, since the 8086 has very few registers, the
stack is used as a temporary variable, the M68K however is equipped with many registers
making the usage of the stack as a temporary variable a bit unnecessary (I hope that no
super smart programmer reads this and thinks; what an idiot).

OK, on to the traps. There are three parts of the Atari that can perform traps; the GEMDOS,
the BIOS and the XBIOS. The GEMDOS is the hardware independent part of the operating
system, this means that the GEMDOS will work on different set of hardware on the Atari. The
BIOS is concerned with input and output, like keyboard input and so on, it works between the
GEMDOS and the hardware. The XBIOS handles the extended features of the Atari hardware,
whatever that means.

You call traps by putting the correct information on the stack, and then calling the correct
trap number and then cleaning up the stack. First, we need a special number, called a
function number, indicating what function we want, for example, going into super mode is
number 32 of the GEMDOS, meaning that we have to put the number 32 on the stack, and
then call trap #1 (which is the trap number associated with GEMDOS). Usually, you also need
to pass additional information to the Atari, this information is put on the stack before the trap
number, and then you call the trap. Thus, put any information associated with the function
on the stack, then put the function code on the stack and then call the trap number that
corresponds to the handler of the function.

It feels a bit confusing with traps and trap numbers, I’ll try to sort it out. The BIOS, XBIOS
and GEMDOS each have several special instructions, that aren’t in the processor, and do
special things. Since they all three have several functions, all three will have the function
numbered 1. In the BIOS, function 1 is a function for returning the input device status, in the
GEMDOS, function 1 gets a single character from the keyboard, and in XBIOS, function 1 will
save memory space. This information must be gathered by referring to a list of all traps
available. In the ST Internals, there is a list of all the traps available, and instructions on how
to use them.

What you do is to specify what trap function you want by putting information on the stack,
then you call either BIOS, XBIOS or GEMDOS, and let them do something with the
information. As an example, I give you this alternative way of changing the background
colour. The -(a7) means put on stack, we’ll cover that in the next tutorial.

 move.w #$700, -(a7) ; colour red
 move.w #0, -(a7) ; in colour 0, background colour
 move.w #7, -(a7) ; function 7; Setcolor
 trap #14 ; call XBIOS
 addq.l #6,a7 ; clean up the stack

The first two move instructions put information regarding the call on the stack, first the
colour is passed, next the palette number to be changed. Then, the trap instruction number
(opcode) must be put on the stack, next we call the XBIOS to process the information. Lastly,
the stack needs to be cleaned up so that none of the information we entered will be left,
cluttering the system. The code above does the same as

 move.w #$700, $ffff8240 ; red background color

The difference is that we take the way around the XBIOS instead of just smacking in the
value directly to the memory, which as you can see is much easier to write. Really, since
every action taken by the computer only changes the contents in memory, what the traps do
is only to change the memory. This we can, in most cases, do ourselves, but in some cases,
to call a trap may be easier, clearer and perhaps more also more safe (stable).

Now we are going to expand upon the program in tutorial two. It gets tedious to run the
program, and then change the background back by running the program again. Good
programs save all the data they change, in order to restore it once the program is complete.
Also, it would be nice to be able to store the code for going in and out of super mode, since
we will use this in every program.

It’s a good idea to have your own libraries of code, which you can cut and paste or include as
you will in your code. Create a file called initlib.s (for initialisation library) and in it put the
code for the super mode. This file is for storing only, when you need the "go into super
mode" instruction, you know where you have it. The file initlib.s should have the following
content.

 initialise
; set supervisor
 clr.l -(a7)
 move.w #32, -(a7)
 trap #1
 addq.l #6, a7
 move.l d0, old_stack
; end set supervisor
 rts

restore
; set user mode again
 move.l old_stack, -(a7)
 move.w #32, -(a7)
 trap #1
 addq.l #6,a7
; end set user
 rts

 section data
old_stack dc.l 0

Well, actually, it can hold any content you want, since this is your personal file, where you
store what you find important. I have different libraries to store different things that I need,
for example graphlib.s and iolib.s. Your libraries are for storing general purpose programming
instructions, like the code for entering super mode.

There are two ways of using your libraries, you can either refer to your library, or you can
just include your entire library in the source code you are writing. Including your entire library
into your source is somewhat unprofessional, since you then get your libraries splashed all
over the place, and any changes or additions that you want to do to the library later on will
have to be implemented in all of your programs. The libraries should ideally be kept in one
place, to make it tidy and neat. So, in order to include your library, use the include command,
followed by the path to your library, like so: include \libraries\initlib.s

However, there is a drawback to the method described above; every time you assemble your
code, you will have to load all your include files into memory from disk, which takes time.
Only the source code you are currently working on is in memory, and any includes will have
to be loaded every time. So, in order to speed things up, I usually include my libraries (or
rather, the subroutines I need) into the source code I’m working at. This can be done with
the file - insert file command, which will append a file at the cursor’s position. Or you can
just copy and paste from your library into your source code as you see fit

 jsr initialise ; jump to initialise

 move.w $ffff8240, d7 ;save background color
 move.w #$700, $ffff8240 ; red background color

 move.w #7, -(a7) ; wait for a keypress
 trap #1 ; call gemdos
 addq.l #2, a7 ; clear up stack

 move.w d7, $ffff8240 ; move back old color

 jsr restore ; jump to restore

 clr.l -(a7) ; clean exit
 trap #1 ; call gemdos

initialise
; set supervisor
 clr.l -(a7)
 move.w #32, -(a7)
 trap #1
 addq.l #6, a7
 move.l d0, old_stack
; end set supervisor
 rts

restore
; set user mode again
 move.l old_stack, -(a7)
 move.w #32, -(a7)
 trap #1
 addq.l #6,a7
; end set user
 rts

 section data
old_stack dc.l 0

Soooo, what’s different? Our routines for getting into and out of super mode have been
neatly packed down the bottom of the code, the command jsr (Jump to SubRoutine) will take
us where we want. Then, we put the value of the background colour in d7, saving it. Smack
in the red colour. Here comes another fine trap, when executed, it will wait for a key to be
pressed before continuing with execution. This trap will give the user a chance to see the
lovely red background colour, and then hit a key in order to progress. Again, I looked after
what I wanted in the ST Internals; something that would allow the program to pause and
wait for a key to be pressed, lo and behold! I found it, and just copied the information. After
this, the value from d7 is put into colour 0, effectively restoring the old background colour.
Lastly, a jump to the restore subroutine and a clean system exit.

[image: tutorial 03 screenshot]

Figure 2. Red background waiting for a keypress

Now we have begun to forcefully control the program flow, the code isn’t executed "top
down", but with commands such as jsr and rts (Return from SubRoutine) we can jump
around. Usually, programs are built up of some initialisation routine, and then a loop more or
less, which only consists of calling other sub-routines. A game of asteroids would for example
look something like this.

 Go into low resolution
Set up player
Set up asteroids
Main loop
Move asteroids
Check for collisions
Check for player input
If no asteroids left
Set up asteroids
Loop

In the next tutorial, we will have to go through addressing modes, that is, the way you can
use addresses. This is really important since everything is dependent on what information is
where, so a thorough knowledge of how to handle addresses is important. That’s all for now.
Happy coding!

Of The Ways Of Addressing Memory

Of The Ways Of Addressing Memory

 2002-06-14 (last edition of the initial revision)

Target that explosion and fire.

~ Star Trek VI - The Undiscovered Country

So, finally; addressing! Before writing this, I read the first two chapters in Steve William’s
"Programming the 68000", and it was very good reading. He explained some things that I did
not really go into, and above all, he has extensive explanations of addressing, before going
into any code. Well, well, all I can say is that I have an a bit more pragmatic approach, this is
after all a tutorial, and the aim is for you to learn through doing. Theory will usually only be
covered in connection with practice. With this in mind, I urge you to get your hands on some
M68K book and study it, because it goes through things more in theory than I do. You will
probably find some of these books on some dusty bookshelf in your local library.

You should have a pretty good idea what memory is, and also what the memory registers do.
Memory is simply put the computers warehouse for storing numbers. Numbers are stored in
binary format, that is, only 1’s and 0’s (refer to tutorial 2
for information on this). There are also standard formats for how many 1’s and 0’s are stored.
The M68K has three; byte, word and longword. A byte is 8 1’s and 0’s, a word is 16 and a longword
is 32. So the quantities have the following storage capacities.

	Name
	1’s and 0’s
	Capacity

	byte

	8

	28 = 256

	word

	16

	216 = 65536

	longword

	32

	232 = 4294967296

So, move.w means move a value, with word size. If we move a value that is bigger than
word size (value > 65536), the value will be truncated (cut off), since we tell the computer to
only move 16 1’s and 0’s. The term "1’s and 0’s" is called a bit. So, a byte contains 8 bits,
never ever never confuse bits with bytes. The capacity is also somewhat of a misnomer.
Since computer start counting at 0, the maximum value containable in a byte is 255. Also, in
order to have negative numbers, the range of a byte is usually -128 to +127. Arithmetic that
does not deal with negative numbers is called unsigned, and when negative numbers are
involved, it’s called signed arithmetic.

Now, we can move on to addressing modes I think. Each address is a reference or pointer to
a place in memory. An address does not point to specific bits, but rather to bytes, meaning
that address $2 does not point to the second bit in memory, but rather points to the second
byte, which begins with the 9th bit in memory.

	Address register
	Contains

	A0

	$2

	Memory

	Contains

	$1

	%10101010

	$2

	%01010101

	$3

	%10101010

If we moved the byte that address register a0 pointed to, we would get %01010101, but if
we moved the word that a0 pointed to, we would get %0101010110101010. If we simply
moved the value of a0, we would get $2. There is a great difference to getting the value an
address register points to, and the value in the address register. When we want something
the register points to, we use parentheses around the address register, like this: (a0). So, (a0)
means the value of the memory place that a0 points to, in this case 01010101, and simply a
(without parentheses) means the value in a0 itself, in this case $2.

You can also put + and - characters before or after the address, meaning that you wish to
increase or decrease the address registers value, either before or after the operation has
been performed (called post or pre increment or decrement). Therefore, move.b (a0)-, d0
means put the value of byte size that a0 points to in d0, then decrease a0 with one. The
value that the address will be manipulated with, is dependent on the memory chunk size, if
it’s byte, then 1, if word 2 and longword 4, in order to keep up with the changes. This is ideal
for moving large areas of memory, you put your move instruction with post increment in a
big loop. Christ, it feels like I’ve explained this very poorly, but don’t worry, it will become
clear with time I think, and especially after this example.

	Memory
	Contains

	$1

	%00000001

	$2

	%00000010

	$3

	%00000011

	$4

	%00000100

	$5

	%00000101

	$6

	%00000110

	$7

	%00000111

	$8

	%00001000

	a1

	$1

	a2

	$2

	a3

	$3

	a4

	$4

	Command
	Effect

	move.b (a1), d0

	d0 = %00000001

	move.w (a1), d1

	d1 = %0000000100000010

	move.b (a3)+, d2

	d2 = %00000011, a3 = $4

	move.b (a3), d2

	d2 = %00000100

	move.l #$3, a3

	a3 = 3, make a3 point to $3

	move.b $1, d0

	d0 = %00000001, put the value of $1 in d0

	move.w -(a3), d3

	a3 = 1, d3 = %0000000100000010

	move.l #$1, a1

	a1 = 1

	move.l #$5, a2

	a2 = 5

	loop 4 times

 move.b (a1)+,(a2)+

 end loop

	$1 00000001

 $2 00000010

 $3 00000011

 $4 00000100

 $5 00000001

 $6 00000010

 $7 00000011

 $8 00000100

As you might have noticed, if you studied the example thoroughly, when you want an
address register to point to a place, you use # when giving the address, but when you want
the content of the address of a memory location, you don’t use #. Thus, if you want a0 to
point to $100, you use move.l #$100, a0. But if you want the value of memory address $100
to be put into d0, you use move.l $100, d0. So, with a #, you have a value, but without #,
you have a pointer.

I think that should cover it nicely. These memory addressing modes are our main concern,
however, there are some more. You can use two address registers in order to get index
(place of pointer), or you can add either a data register or a fixed value to an address. These
are pretty self explanatory and you’ll see when they come by. For example move.b (a0, a1), d0
means move the memory value pointed to by a0 + a1 into d0.

Now, in order to get an even firmer grip on traps, which seem to be hard to grasp, I’ll explain
a bit more about the stack pointer. The trap part is the one I’ve had to edit the most because
it was unclear. The stack pointer works like any other address register, the only difference is
that some functions have the stack pointer as default address pointer, for example, traps.
The idea of the stack is something that you can put data in, the last data entered is the first
data that comes out, like spring loaded platforms for plates in cafeterias. When you put data
on the stack, it’s called push, and when you retrieve it again, you pop. So if you push the
numbers one and two onto the stack, and then pop two items, you will get two and one (last
in, first out; LIFO).

When pushing (putting items on the stack), you address it using pre-decrement addressing
mode, and when popping, post-increment. This means that if the stack from the beginning
points to $100, it will point to lesser and lesser values as you push data, and will increase in
value as you pop.

 ; (a7 = $100)
 move.w #10, -(a7) ; push 10 onto the stack
 ; (a7 = $98)
 move.w #8, -(a7) ; push 8 onto the stack
 ; (a7 = $96)
 move.b #1, -(a7) ; push 1 onto the stack
 ; (a7 = $95, uneven address, be careful)
 move.b (a7)+, d0 ; pop stack into d0
 ; (a7 = $96)
 move.w (a7)+, d1 ; pop stack into d1
 ; (a7 = $98)

As you see, the stack clears itself up when using push and pop instructions. However, when
we use traps, the BIOS, XBIOS or GEMDOS won’t clear up the stack for us, so in order for the
stack to keep the correct address, we have to add a certain number at the end of the trap
call. If we don’t do this, the stack will not point to the correct address, and when you start
pushing and popping, everything will be out of alignment. Also, of interest to note, is that
when you go into super mode, the user stack is replaced by the super stack, so it needs to be
backed up in order to be restored later, when we switch back into user mode again.

When we already are into talking about memory and addressing, I thought I’d cover how to
make your own variables and what the text to the leftmost bit really is. As you must have
noted, all instructions are one tab in, so to speak, while the name of subroutines and
variables are at the leftmost in the text, well, there you have it :) What happens when you
put text to the leftmost in your source code, is that you tell the assembler that that memory
position, is also known as the text you entered. Every line of source code has its memory
value, which of course is some hex value, so instead of trying to figure out that hex value,
you tell the assembler that "henceforth, this line shall be known as [whatever you write]".
Also, any text written after the instruction, is treated as comments and are passed over by
the assembler. You may also use a * to denote comments. Comments beginning with a *
can be inserted everywhere.

Disclaimer: the "actual memory position" values are purely for example and have nothing to
do with real life (or computers).

	Actual memory position
	Label
	Commands
	Comments

	$0

	first_line

	move.w #10, d0

	easy as pie

	$2

	
	move.w #$0, a0

	

	$4

	
	bra a0

	moves to $0

	$4

	
	bra first_line

	move to $0

	$8

	
	
	

	$A

	* a nice comment

	
	

	$C

	exit

	clr -(a7)

	never reached

	$E

	
	trap #1

	clean exit

The command bra, for Branch, is used to jump to different memory positions, what it does
then is to alter the value of the program counter (PC). You remember, the address register
that holds the position of the next instruction to be executed (branching will be covered
extensively in the next tutorial). Since variables are just chunks of data at a certain memory
position, they are defined in almost the same way. You have a name for the variable, and
then you say either dc.N, where N is either b, w or l for byte, word or longword, or ds.N. DC stands for Define Constant, and DS is Define Storage.

DC is a variable, while DS is a large storage of memory. The number after DC is the initial
value of the variable, and the number after DS is how many variables of the same type you
want. DS is used for creating big memory spaces that you want to put stuff into later, like a
bitmap or so, more on this in another tutorial. The DC area should be denoted by a "section
data", and the DS section should be denoted by a "section bss" (Block Storage Segment).
Section data comes first, and section bss next, these areas are to be put last in the code.

 section data
temp dc.l 0 ; a longword sized chunk of memory,
 ; given value 0

 section bss
storage ds.w 4 ; four words after one-another
storage2 ds.l 2 ; two longwords after one-another,
 ; since one longword is two words,
 ; storage and storage2 have the
 ; same size

I didn’t come up with any creative way to use our new-found knowledge of addressing
modes, so I just made some changes to the program we already have. For example, an
unnecessary putting of the background colour memory in a0 instead of just accessing it
directly, and moving the temp storage from d0 to the stack instead.

 jsr initialise ; jump to initialise

 move.w $ffff8240, -(a7) ; push old colour to stack
 move.l #$ffff8240, a0 ; a0 points to colour 0
 move.w #$700, (a0) ; put $700 where a0 points

 move.w #7, -(a7) ; wait for a keypress
 trap #1 ; call gemdos
 addq.l #2, a7 ; clear up stack

 move.w (a7)+, (a0) ; pop from stack

 jsr restore ; jump to restore

 clr.l -(a7) ; clean exit
 trap #1 ; call gemdos

initialise
* set supervisor
 clr.l -(a7) ; clear stack
 move.w #32, -(a7) ; prepare for user mode
 trap #1 ; call gemdos
 addq.l #6, a7 ; clean up stack
 move.l d0, old_stack ; backup old stack pointer
* end set supervisor

 rts

restore
* set user mode again
 move.l old_stack, -(a7) ; restore old stack pointer
 move.w #32, -(a7) ; back to user mode
 trap #1 ; call gemdos
 addq.l #6, a7 ; clear stack
* end set user

 rts

 section data

old_stack dc.l 0

That was that, I hope you know enough about addressing now to push on. In the next
tutorial we will probably cover the graphics memory a bit, and what you can do with it. This
means we’ll finally get some action people! I’m starting to get bored of only changing the
colour of the background, aren’t you? We have covered most of the basic theory I think,
which means that in the future there will be more practical coding, like techniques for
scrollers, moving sprites, making rasters and stuff like that.

Of The Workings Of The Graphics Memory And Minor Skills In Branching

Of The Workings Of The Graphics Memory And Minor Skills In Branching

 2002-07-01 (last edition of the initial revision)

She doth teach the torches to burn bright

~ Romeo and Juliet

It’s 10:13 in the morning, school will start at 1 o’clock so I have some spare time before I’m
at it. I’ve hooked Direct Connect up on some downloads; one Bruce Lee movie and one Yun
Fat Chow movie, I’ve loaded over 70 minutes worth of Atari chip music in Winamp, time to do
some serious writing.

As promised in the title, this tutorial will be all about the graphics memory, which really is all
you need to manipulate graphics on the Atari. So, if you really try hard, you should be able to
do scrollers after reading this tutorial, but don’t overextend; I plan to cover scrollers in the
next tutorial anyways, because they are so good to practice your skills. First though, I
thought I’d take a quick repetition and just go over a few basic things.

	Symbol
	Meaning

	#

	decimal value

	#%

	binary value

	#$

	hexadecimal value

	$

	memory address, expressed in hexadecimal

	.b

	Byte

	.w

	Word

	.l

	Longword

One bit is either a 1 or a 0. There are 8 bits to a byte, two bytes to a word and 2 words to a
longword, meaning there are four bytes to a longword. BTW, four bits are called a nibble,
which is half a byte. The smallest addressable memory block is a byte, meaning that every
count of an address is a byte. This means that if a0 points to $100, and you do a move.w
#10, -(a0), a0 will point to $98. A0 will decrement by two, because a word is two bytes. If a0
points at $100, and you do a move.l #10, (a0)+, the value in a0 will be $104, since a
longword is four bytes. The value at memory address $100 will be 10, also, in the previous
example with post decrementation, the value at $98 will be 10, we don’t know the value of
$100.

I find it easiest to organize my files on the PC, and then transfer what I need to the Atari.
You can booo all you want, I don’t care! It’s really easy to transfer stuff to the Atari, all you
need is a diskette formatted in the correct way, you can even use a PC diskette. If you look
at an old Atari disk, and a new PC disk, you will see one big difference; there is a hole on the
left side of the PC disk, on the same spot that the write protection hole is at on the right side,
on the Atari disk, there is no hole. Default size for Atari disks is 720 k, whereas on the PC, it’s
1.44 megs (twice 720 k).

Sometimes, you can use PC disks for the Atari without any modifications, just format it to 720 k,
the default if you format it in GEM on the Atari. If this doesn’t work, just put some tape
over the hole, this way, the PC disk will look like an Atari disk. Great huh? Now you can
organize your files on the PC, and have loads of stuff, then, when you need it on the Atari,
just put the files you want over on a disk and use it. This disk will work fine on both systems.
Only restriction is that you must have it in 720 k format. This can also be done on the PC by
formatting in this way format a: /f:720. If you didn’t know this, you’ll probably kick my ass
for not telling you earlier, hehe, suffer.

Now, on to coding again. As you may have guessed, what you see on the monitor (or TV) is
controlled by memory in the Atari. Before explaining that, however, I shall go into the
different resolutions. There are low, medium and high, easy as pie. High resolution is that
which we find only on monochrome monitors, it’s 640×400 pixels, and uses only two colours.
Medium resolution is 640×200 pixels and uses four colours. Finally, the most interesting
resolution is low, featuring 320×200 pixels with 16 colours. A pixel, btw, is a dot on the
screen, if you look closer in a game or so, you’ll se that the spaceship/dude/whatever is build
up of small dots, those are pixels. The upper left corner is considered 0,0 in a coordination
system, and the bottom right corner is the maximum. Thus, in low resolution, the pixel at 0 x
and 0 y is in the left uppermost corner, and the pixel at 319 x and 199 y is at the bottommost
right position.

How, then, is this represented in memory? For high resolution, it’s very simple, each pixel is
represented by a bit, either 1 (black) or 0 (white). Thus, if you change the first bit in the
graphics memory (sometimes also called screen memory), you will change the bit in the left
uppermost corner, the pixel at 0,0. If you change the last bit in the screen memory, you’ll
change the pixel at 639,399. Since one pixel is represented by one bit, it’s easy to calculate
how much memory is used, 8 pixels are one byte. 16 pixels one word and a longword will
hold data for 32 pixels. 640×400 = 256000, the number of pixels total. If we divide this by 8,
we will get how many bytes the screen memory will have to be, this is 32000 bytes.

In medium resolution, we have four colours. Hmm, four colours, how do we represent a value
between 0 and 3? Well, we can use two bits, since %11 (binary 11) is 3. So now, we need
two bits to represent each pixel. Also, the number of possible lines has dropped by half to
200 instead of 400, meaning that medium and high resolution both use 32000 bytes of
memory. You might think that the two bits for each pixel are right next to each other, not so,
they are spread over what you call bit planes, but that will come in just a little sec, since it’s
extremely complicated.

Low resolution has 16 colours. %1111 is 15, so we need 4 bits to represent each pixel in low
resolution. The number of pixels per line is reduced by half, and the number of bits per pixel
is doubled, meaning that we still have 32000 bytes of screen memory. If you don’t believe
me, we’ll do the math again. 320×200 is 64000 pixels, each pixel needs 4 bits to represent it,
meaning 256000 bits, at eight bits to a byte, we again get 32000 bytes.

On to the bitplanes, I will go through how it works in low resolution, since that is the most
interesting mode and the exact same technique is used in medium resolution, but with only
two bit planes instead of four. OK, here goes. The pixels are stored in words, in groups of 16
(remember, 16 bits in a word). The first 16 pixels are thus stored in 4 words, that come after
one another. Thus, the first 4 words of the screen memory are used to store the first 16
pixels. I’m feeling I’m loosing it here, this is damn hard to explain, and it took me weeks
before I got it myself.

The bit in the first word is the least significant bit in the colour number. Least significant
means the rightmost bit, since this is the one that affect the value the least (it either adds
one or zero to the final value), while the most significant bit is the leftmost bit. The bit in the
fourth word is the most significant bit in the colour number. The first bits in the first four
words control the first pixel. Are you confused yet? An example perhaps.

	Graphics memory, expressed in binary

	%1000000000000000

	first word

	%0000000000000000

	second word

	%0000000000000000

	third word

	%0000000000000000

	fourth word

	Colour number of pixels, expressed in hex for ease of reading

	$1000000000000000

The only bit that is set, is the least significant bit of the first word in the series. The term
"set" means that a bit has the value 1, and not 0. This means that the first pixel will be colour
1.

	Graphics memory, expressed in binary

	%1100000000000000

	first word

	%1100000000000101

	second word

	%0100000000000110

	third word

	%0110000000000000

	fourth word

	Colour number of pixels, expressed in hex for ease of reading

	$3F80000000000642

As you can see, just read top down, and you’ll have it.

So, in order to address the 17th pixel, you’d first have to "jump over" the first four words of
graphics memory, then manipulate the first bit in the next four words. This makes pixel
manipulation a pain in the ass, since not only do you have to change values in four different
places, but you also have to work with bit manipulation. All in all, very tedious and time
consuming work. Just for comparison, there is a graphics mode on the PC, the MCGA mode,
which is extremely user friendly. It also has 320×200 pixels, but 256 colours instead. Does
this value ring a bell? It’s a byte! So, each pixel is represented by a byte, making it a wonder
of ease of use. In order to change the pixel, you just have to address the correct byte, which
is dead simple. It would be done like this, move.b #255, (a0) where a0 points to address
memory. This would change the first pixel to colour 255. Or to change the third pixel, `move.b
#255, 3(a0). But to change the first pixel on the Atari, in low resolution, we instead have to
do something like this.

 ; a0 points to screen memory
 move.w #%1000000000000000, (a0)
 move.w #%0000000000000000, 2(a0)
 move.w #%0000000000000000, 4(a0)
 move.w #%0000000000000000, 6(a0)

This sets the first pixel to colour 1. The numbers before (a0) are, as you might recall,
indexes to memory, so 2(a0) means where a0 points plus two. Since we constantly want to
point to the next word, we must increase the pointer by two bytes each time. We could also
have used a (a0)+ in order to increment the pointer, but then a0 would not have pointed to
the beginning of the screen memory anymore. It all depends on what you want to be doing.
Also note, that since we move information in, any information previously there, will be lost.
If, for example, pixel three and four already had values of some kind, and we executed the
commands above, they would become colour zero, since information regarding them would
be overwritten with all zeros as shown above.

Now you hopefully possess the knowledge necessary for understanding my short little
program. Let me just stress that really getting the workings of the graphics memory is very
difficult. What bit goes where, what bit does what, and so forth, so don’t despair when you
don’t get it right away; you have a long way ahead of you. Oh, I realized, I have some more
things to tell you.

A scan line is a row of pixels, there are 200 scan lines in low resolution. That’s easy enough.
The other thing I have to tell you is about the VBL, or Vertical BLank. The Atari operates in
either PAL (Phase Alternating Line) or NTSC (National Television Standards Committee):
NTSC is the American standard and PAL the European. Since I’m from Europe and it also
seems that most Atari related stuff is from Europe, NTSC will be given little support, take that
Yankees. The PAL or NTSC has to do with how many times per second the screen is updated,
in NTSC, it’s 60 times per second, and in PAL it’s 50. Thus, the so called refresh rate, is either
50 or 60 Hz. On game menus, you can often change between these modes. When I was
little, and only played games, I never got what the 50/60 selection on the game menu was
about, now I do. Since we use PAL, the refresh rate on our stuff will be 50 Hz, meaning that
the monitor is updated 50 times per second.

The screen is painted by an electron beam, that starts in the upper left corner, and then
works its way down, doing a scan line, and then moving on to the next. This happens 50 (or
60) times every second. It’s good practice to synch your graphics with this beam, this will be
further expanded in the next tutorial. There is a trap, that will put the system in pause until
the next VBL, that is, the next time the electron beam is about to paint the screen. This is an
excellent timer, and will allow you to know exactly how much time everything takes. Just
think about it, if you put the wait for VBL trap in the beginning of your main loop, you’ll know
that the loop will perform 50 times per second. This is ideal for making games or demos not
run to fast. The trap function number is 37, it’s called by XBIOS and looks like this:

 move.w #37, -(a7) ; wait vbl
 trap #14 ; call XBIOS
 addq.l #2, a7 ; clean up stack

This is a good thing to include in your graphics library if you have one, if you don’t, you might
think about making one.

I realize when looking over the source code again, that there are some more things to
explain. Hehe, well, at least I explain them sometime, and I don’t just dump the source code
on you and let you browse through those instruction sets and figure things out for yourself.
Of course, it’s a good thing to know where the graphics memory is, unlike some other
computers that has a fixed location for the screen memory, the Atari can use any part of the
memory. This simple trap will put the address of the graphics memory in d0, which you then
can move into the address register of your choice.

 move.w #2, -(a7) ; get physbase
 trap #14 ; call XBIOS
 addq.l #2, a7 ; clean up stack
 move.l d0, a0 ; a0 points to screen

Actually, it might be somewhat of a bad habit to use registers d0-d2 and a0-a2 unless you
have to, since those registers can be destroyed by, for example, calling traps, and other
similar things handled by parts you don’t have full control over. Physbase here stands for
physical base, and means the physical base of the graphics memory. Note also, that when
moving addresses, like the last command above, you should always use longword size. This is
so because the Atari uses 24-bit addresses, each address is 24-bits long, and if you only
move a word, or heavens, a byte, information will be lost.

What more, oh yes, the dbf and clr commands. We’ll start with the easy one, clr. CLeaR
clears all bits in the effective address operand. In clear English, this means "make something
zero". For example:

 move.l #$100, a0
 move.l #10, d0
 move.l d0, (a0)
 clr.l d0
 clr.l (a0)

Now both d0 and $100 will contain zero.

The dbf command is a bit special. Instead of dbf, you can also use dbra. It is used for making
a loop a certain amount of times, it’s the equivalent to a for-loop in high level languages.
When using the command, you give a controlling data register, and the address to loop. Each
time, the data register will get decremented by one, and then it will be tested to see if it’s -1,
if it’s not, the execution will jump to the given address.

 move.l #$100, a0
 move.w #4, d0 ; execute loop 5 times
loop
 move.l d0, (a0)+
 dbf d0, loop

So, can you figure out what the memory configuration will be for this?

	Memory
	Value

	$100

	4

	$104

	3

	$108

	2

	$10C

	1

	$110

	0

	(some hex counting training as well, aren’t I nice?)

Since the value gets decremented right before it’s tested for -1, the loop is never looped
through with the value -1. So, if you want a loop to loop five times, put four in the controlling
data register. Remember that on the last loop, the data register will contain zero. That should
be it, finally, we can get to my training program. You should be able to figure it out yourself,
but I hate it when people say that and I still have many questions, so I’ll walk you through it.

The program fills the first 60 scan lines with colour 1, the next 60 with colour 2 and the next
60 with colour 3. Then it sets the colour values for these three colours to the maximum level
of the three "main colours", RGB, or red, green and blue. When this set up is done, it
decrements the value for each colour by one every half second, when the values reach zero
(black) the program terminates itself. The countdown itself is achieved by first waiting 25
VBLs, and then running through 7 such waits.

 jsr initialise

 move.w #2, -(a7) ; get physbase
 trap #14
 addq.l #2, a7

 move.l d0, a0 ; a0 points to screen

; clears the screen to colour 0, background
 move.l #7999, d1 ; size of screen memory
clrscr
 clr.l (a0)+ ; all 0 means colour 0 :)
 dbf d1, clrscr

 move.l d0, a0 ; a0 points to screen

* fills screen with colours, ok 180 scanlines :)
 move.l #1199, d0 ; 60 scanlines
fill1
 move.w #%1111111111111111, (a0)+
 move.w #%0000000000000000, (a0)+
 move.w #%0000000000000000, (a0)+
 move.w #%0000000000000000, (a0)+
 dbf d0, fill1 ; filled with colour 1

 move.l #1199, d0 ; 60 scanlines
fill2
 move.w #%0000000000000000, (a0)+
 move.w #%1111111111111111, (a0)+
 move.w #%0000000000000000, (a0)+
 move.w #%0000000000000000, (a0)+
 dbf d0, fill2 ; filled with colour 2

 move.l #1199, d0 ; 60 scanlines
fill3
 move.w #%1111111111111111, (a0)+
 move.w #%1111111111111111, (a0)+
 move.w #%0000000000000000, (a0)+
 move.w #%0000000000000000, (a0)+
 dbf d0, fill3 ; filled with colour 3

 move.w #$000, $ff8240 ; black background
 move.w #$700, $ff8242 ; red colour 1
 move.w #$070, $ff8244 ; green colour 2
 move.w #$007, $ff8246 ; blue colour 3

 move.l #24, d5 ; 25 VBL's per loop
 move.w #6, d6 ; make 7 loops
main
 move.w #37, -(a7) ; wait VBL
 trap #14
 addq.l #2, a7

 dbf d5, main ; loop vbl's

 add.w #-$100, $ff8242 ; subtract one from red
 add.w #-$010, $ff8244 ; subtract one from green
 add.w #-$001, $ff8246 ; subtract one from blue

 move.l #24, d5 ; reset VBL counter

 dbf d6, main ; end of main loop

 jsr restore

 clr -(a7)
 trap #1

initialise
* set supervisor
 clr.l -(a7) ; clear stack
 move.w #32, -(a7) ; prepare for user mode
 trap #1 ; call gemdos
 addq.l #6, a7 ; clean up stack
 move.l d0, old_stack ; backup old stack pointer
* end set supervisor

* save the old palette; old_palette
 move.l #old_palette, a0 ; put backup address in a0
 movem.l $ffff8240, d0-d7 ; all palettes in d0-d7
 movem.l d0-d7, (a0) ; move data into old_palette
* end palette save

* saves the old screen adress
 move.w #2, -(a7) ; get physbase
 trap #14
 addq.l #2, a7
 move.l d0, old_screen ; save old screen address
* end screen save

* save the old resolution into old_resolution
* and change resolution to low (0)
 move.w #4, -(a7) ; get resolution
 trap #14
 addq.l #2, a7
 move.w d0, old_resolution ; save resolution

 move.w #0, -(a7) ; low resolution
 move.l #-1, -(a7) ; keep physbase
 move.l #-1, -(a7) ; keep logbase
 move.w #5, -(a7) ; change screen
 trap #14
 add.l #12, a7
* end resolution save

 rts

restore
* restores the old resolution and screen adress
 move.w old_resolution, d0 ; res in d0
 move.w d0, -(a7) ; push resolution
 move.l old_screen, d0 ; screen in d0
 move.l d0, -(a7) ; push physbase
 move.l d0, -(a7) ; push logbase
 move.w #5, -(a7) ; change screen
 trap #14
 add.l #12, a7
* end resolution and screen adress restore

* restores the old palette
 move.l #old_palette, a0 ; palette pointer in a0
 movem.l (a0), d0-d7 ; move palette data
 movem.l d0-d7, $ffff8240 ; smack palette in
* end palette restore

* set user mode again
 move.l old_stack, -(a7) ; restore old stack pointer
 move.w #32, -(a7) ; back to user mode
 trap #1 ; call gemdos
 addq.l #6, a7 ; clear stack
* end set user

 rts

 section data

old_resolution dc.w 0
old_stack dc.l 0
old_screen dc.l 0

 section bss

old_palette ds.l 8

[image: tutorial 05 screenshot]

Figure 3. 3 colors

Oh, naughty me, I added a bunch of stuff to my initlib without telling you about it. Well, right
now, you’ll just have to accept it, any problems with that private!? The thing it does is to save
all information regarding resolution, screen setup and so on, then change to low resolution.
When the restore subroutine is called, it restores everything as it was. While time goes by, I
probably won’t dump all my source code into my tutorials, for example, an include initlib.s will
probably be the way in the future. I’m also thinking about sticking to just give out the
separate .s file with the source code, and only comment it here in the main tutorial so you
won’t have the same code in two places. How does that sound? You curious types can go
through the initlib code, and try to figure it out, I have commented it quite well just so you
can do that.

There might be some problems with the math here, in the clear routine, 8000 is given as the
screen size. Yes, 8000 longwords, 8000×4 = 32000 bytes. 1199, or rather 1200 should equal
60 scan lines? Yes, every pass through the fill-loop moves 4 words. 4 words contain
information for 16 pixels, meaning that for every loop, 16 pixels will be set. 320×60=19200
pixels total (320 pixels per scan line), and since we set 16 pixels per loop, we divide this
value by 16 to get the total number of loops, which, incidentally, is 1200. That should clear
any trouble with the numbers.

I hope there’s no trouble with the main loop part, the first little loop is all about making 25
VBLs, in other words, waiting for 0.5 seconds. Then, the colour values are changed, making
the colours 1,2 and 3 go towards black. Lastly, another loop controller that makes sure the
main loop is looped through seven times.

Now that you are equipped with basic knowledge of the graphics memory, I think we’ll be
able to handle a scroller in the next part. It depends, I’ll have to write one and see if it’s not
too complex. If it is too complex, you’ll probably be looking at a theory tutorial again.

Of Seeing Behind The Curtain Of An Execution And Getting Intimate With Files

Of Seeing Behind The Curtain Of An Execution And Getting Intimate With Files

 2002-07-01 (last edition of the initial revision)

Great! I love fighting.

~ Fong Sai-Yuk

Hiya’all, it’s been a little while since the last tutorial. Mainly because I wanted to code a little
bit for myself and not only write stuff. This tutorial will NOT be about scrolling, unfortunately,
but it will cover the theoretical base which you’ll need to be able to do the scrolling as will be
covered in the next tutorial. However, after this tutorial, you may figure it out by yourself. Of
course, the thing you have to do to scroll, is to just move the correct screen memory bytes to
the correct place. This will be covered in depth in the next tutorial, promise.

We’re now beginning to get past the most fundamental theory, and so our code is getting to
be more and more advanced. This in turn means that often, a program will assemble without
errors, but it still won’t work the way we want it to. Something somewhere is not as we
thought it would be, a variable might not be assigned the correct value, a mathematical
equation might not produce what we thought and so on; endless possibilities. This is where
the debugger comes in. Debugger? says you. To illustrate, let me tell you this fairy tale.

In the olden days, there was a big computer. So big it was that two men could not put their
arms around it. The computer stood in the big country that lies west of here, and all day long
it crunched numbers. It was very happy. Then, one day, it could not crunch numbers any
more, something was wrong and the computer fell sick. All the people in white robes, that
saw to the computers every need, were greatly distressed. No one knew what was wrong.
So, in a last desperate effort, they opened up the poor computer to have a look inside. They
found that a little bug had flown in, and that was the root to the sickness. So, the people in
the white robes removed the bug, and the computer was again healthy. It was all smiles and
could once again crunch numbers all day long. Thus endeth the tale. (since this is a fairy tale,
I make no claims that the exact facts are true, but like all legends, it contain a grain of truth)

Debugging, is the art of removing errors from source code. This is actually very hard, and
one can probably be as skilled in debugging as writing code in the first place. Debugging
usually takes at least half the time of developing a program, so good planning and lots of
time in the debugger is a good thing indeed. Nowadays, bugs are errors in the source code,
rather than actually physical bugs. Debugging is getting rid of bugs, creating error free code,
and a debugger is a tool that helps you with this process. Devpac comes with a debugger,
called MonST, I guess it stands for MONitor ST.

After you’ve assembled to memory, instead of pressing ALT+x and run the program, you can
press ALT+m and run the MonST, henceforth referred to as the debugger. Lots of information
will pop at you, and after you’ve come over the shock, you’ll start to make quick sense of it.
There are three "windows", areas rather, registers, disassembly pc and the memory. The
disassembly pc area is your actual source code, the other two should speak for themselves.
When you are in debugger mode, instructions will be executed one at a time, this allows you
to see how each instructions change the content of memory and registers. I’ll go through
each area and what you do with it.

[image: tutorial 06 monst]

Figure 4. MonST

Registers, here you have the content of all data registers, all address registers, the status
register and the program counter. All values are given in hex, which makes every two digits
one byte, and each digit one nibble. As you can see, there are eight digits for each data
register, which makes sense since you can store a longword in a data register. When data
registers are beginning to get filled with values, there will pop up some symbols, sometimes
strange, to the right of the register. These symbols are the ASCII equivalents for each byte in
the data register. We haven’t talked about ASCII I think, but it’s the way to represent
characters with numbers I mentioned back in tutorial one. For example, the number $41 is
the letter A.

The address registers are to the right of the data registers, and work pretty much the same.
To the right of the address registers, are the memory content that the address register points
to. Since there are four digits to every group, each group is a word. Thus, to the right of each
address register, is the memory content of the first five words that the address register points
to. To the right of the memory content, you’ll also see ASCII representations of the content,
just as with the data registers.

Below the data registers, are the status register and the program counter. The status register
haven’t been mentioned much either, but it takes note of several statuses of the ST, for now,
it will probably be 0300 and you’ll se a U to the right of it. The U means User mode, and
that’s what we’re in now until we change it to Supervisor. The status register will also keep
track if a mathematical operation results in a overflow and so on. An overflow is when the
number generated is bigger than can be stored, for example, adding two data registers with
very big values will generate a value to big to store in one data register, so data loss will
occur. Below the status register is the program counter, and to the right of the program
counter you’ll see the instruction that it points to.

The disassembly area is the code you’re currently debugging. It will look just like your source
code. You can scroll up and down the code, and a little arrow will indicate your current
position. To execute a line of code, press ALT+z, to skip a line of code, press ALT+s. Usually,
you’ll want to skip jumping into the initialise subroutine, because this takes some time and
might also put the ST in low resolution, making it hard to see anything. You’ll usually want to
go to the mathematical equations directly, to see what happens. There’s also a very nice way
to jump straight to a position of your choosing. You can put "flags" in your source code, by
entering the command "illegal", then, when in debugger mode, hit CTRL+r. This will execute all
commands from your current position to the next illegal position, you’ll have to skip past the
illegal instruction to continue, using ALT+s. A great way for executing an entire loop without
stepping through it all.

The memory area is most interesting, this is where the entire content of the memory is listed.
By pressing m, you can type in the name of any memory tag (variable) that you are using,
and see what the memory that it points to contains. If you’re smart, you’ll immediately type
in ff8240, which will take you directly to the palette. Unfortunately, that will get you little,
since this is protected memory, you’ll only see `*’s.

You can change between these areas by pressing tab, and you can only issue commands in
the active area. When you are done debugging, you don’t have to wait for the whole program
to execute and terminate, just hit CTRL+c, twice. Now this is useful, right? The best way to get
to the workings of the debugger is, like always in programming, to get to it; debug some
simple piece of code and see what happens to the registers and memory. Oh, yes, in the
memory area, you can also type in aN (where n is 0-7) to get directly to the memory area
pointed to by an address register.

Now, onto file formats! A file is simply a collection of data. There really is no such thing as a
.pi1 (Degas Elite) file, or an .mp3 file. A file contains data, so, this data is interpreted.
Different things will happen depending on how you interpret the data. Let’s say, for example,
that we have a file containing only a byte, and it holds this data

 %01000001

Easy, says some paint program, these are the first eight pixels in monochrome mode. Pixel
number 2 and 8 is supposed to be black, the rest are white. No, says the text editor,
%01000001 is $41, which corresponds to ASCII character A. This is the letter A. Nonsense,
says the home taxation program, %01000001 is a control code in my program that says this
file represents a terminated account…​ and so on. Programs interpret files, and do something
with the information. Since programs are also files themselves, interpreted by the operation
system, which is itself also files more or less, the whole shit is built on subjective opinions on
what to do with the data presented.

Given the information above, one might think that it’s a good way to know how different
programs interpret data, this is the knowledge of file formats. In order to understand this, we
will examine a very simple file format, the Degas Elite .pi1 file format. It’s almost too simple
really, but it’s useful and we’re going to use it in our next tutorial. Usually, files have so called
file headers, which give some information about the file. For example, a Windows BMP file,
starts with the ASCII codes for B and M, which makes sense and gives a signal of what kind
of file it is. It’s of a little nerdy interest to know that each .exe file on the PC, starts with the
ASCII codes for the letters MZ, which was some hot shot in Microsoft back when they
defined the file format (and perhaps still). A good example of a file header could perhaps be
the resolution of an image, or the font type in a word processor file.

In order to examine files correctly, we need a so called hex editor. A normal text editor will
not do, since the text editor would interpret data as ASCII code, we want a program that just
presents the data in the file, and does not interpret it in any way. With this hex editor, you
can "hack" files yourself. Say, for example, that you want a program that converts one
graphic file format to another; you’d need knowledge of both file formats. Sit down with a
paint program, and a hex editor. Do some small changes in the paint program, and watch
what’s changing in the file with the hex editor. This is tedious work, at best, and you’re
probably better off trying to locate the information somewhere. So, in order for you to begin
and try out your efforts, I will tell you how the .pi1 files look like.

First, there are two bytes giving the resolution, in low resolution, it’s just 0, in medium, 1,
and in high resolution, 2. Then comes 32 bytes containing the palette data for the picture.
After that comes the pixel information, looking exactly the way it does in the screen memory.
And that is that. Very simple file format indeed. So, how big is a .pi1 file then, only knowing
the above? 32034 bytes. 32000 bytes for the pixel information, 32 bytes for the palette, and
two extra bytes in the beginning of the file. Here’s a little program that will display a .pi1 file
(a little note: in Degas Elite, there are 32 bytes in the end containing information on
animation and stuff, uninteresting in our case).

 jsr initialise

 movem.l picture+2, d0-d7 ; put picture palette in d0-d7
 movem.l d0-d7, $ff8240 ; move palette from d0-d7

 move.w #2, -(a7) ; get physbase
 trap #14
 addq.l #2, a7

 move.l d0, a0 ; a0 points to screen memory
 move.l #picture+34, a1 ; a1 points to picture

 move.l #7999, d0 ; 8000 longwords to a screen
loop
 move.l (a1)+, (a0)+ ; move one longword to screen
 dbf d0, loop

 move.w #7, -(a7) ; wait keypress
 trap #1
 addq.l #2, a7

 jsr restore

 clr.l -(a7)
 trap #1

 include initlib.s

 section data

picture incbin jet_li.pi1

[image: tutorial 06 screenshot]

Figure 5. Jet Li

There are three new instructions here, movem, incbin and include. Include is the easy one,
just consider it as though you had pasted the entire contents of the initlib.s file on the include
line. As you will see, when you assemble the code, this takes a while since the Atari needs to
read the file each time. Therefore, I strongly suggest you actually do paste the file in, instead
of just including it. Your choice.

Incbin, as you may have guessed, is the way to include files, they fall under the section data.
This puts the entire contents of the file in memory. In this particular case, I put the entire
contents of the .pi1 file called jet_li.pi1 at the memory position I choose to call picture. You
can achieve the same result by hand copying the content of jet_li.pi1. Something like
picture dc.b 0,0,0,0,$07,$11…​ (this is the beginning of the file)

Movem MOVEs Multiple data from memory to registers or the other way around. It can only
move words and longwords. As you can see, I move the memory from picture+2 into the
data registers. This is great since all eight data registers can hold all in all 32 bytes of data,
since each colour is 2 bytes of data, this means that the entire palette of 16×2 bytes of data
fits precisely into the eight data registers. The reason for picture+2 is that we want to skip
the first two bytes, since they only contain resolution information. After filling the data
registers with the palette, we just smack it in at the correct starting address.

Then, it’s a question of putting the screen memory pointer in a0, and the start of the pixel
part of the picture in a1. The picture+34 is because this is where the pixel part starts, 2
resolution bytes plus 32 palette bytes is 34 bytes that should be skipped in order to reach the
pixel part. As shown in the previous tutorial, the screen size is 8000 longwords. I just loop
through that amount, copying the content from the picture into the screen memory. Easy?
This is a small loader for .pi1 files. If you assemble this piece of code as a .prg file (or just
take my pre-assembled file), you’ll notice that the program size will be 32494. Most of this is
the .pi1 file itself, our added code is only 32494 - 32034 = 460 bytes. We now have a self-
loading .pi1 image, nice.

If you think it would be amusing, you can add this little loader to all your .pi1 files, in this
way, you’ll never have to go through Degas to watch them, they load themselves. Of course,
you’ll get a .prg file instead of a .pi1 file, meaning that you can’t edit it with Degas. But then
you could write your own program for extracting the image information and turn it into a .pi1
file again. Fun, right? Note; you don’t have to keep the original .pi1 file for this "loader" to
work, since the .prg file contains the data it needs for the image.

While we’re on the topic, I will mention, briefly, compression. You must know what file
compression is, it’s making a file smaller, but usually useless, until you decompress, or
unpack, it again. How does this work? The file can’t just shrink, can it? Well, more or less, it
actually can. Consider this information:

 %00000000
%11111111

The first byte is all 0’s, and the second one all 1’s. Suppose we replace the information given
with:

 08
18

and tell the program that after each 1’s or 0’s, there will be a number that tells how many 1’s
or 0’s there will be. If we have a file with big areas of similar data, for example 50 bytes of
0’s and then 70 bytes of 1’s, this so called compression algorithm would compress this
information into four bytes. It would look like this:

 050
170

or, just to give you some bit mathematics, we say that the high bit of each byte controls
whether it should be 1’s or 0’s, and the next seven bits tell how many of each kind should
follow, it would look like this.

 %00110010 50 0's
%11000110 70 1's

That was that on compression. The above is a very simple compression algorithm and if you
use it, you may end up with files bigger than they were from the beginning. I know file
compression was a bit sketchy, but if you get the part of how files work, the compression
part shouldn’t be that hard. Also, file compression might be covered more extensively later.
So far, I know very little myself since I haven’t used it for anything. I have no idea how good
file compression algorithms look or anything, so don’t ask. This is just the theoretical base.
Study carefully, since I’m going to use a .pi1 file for the font in the upcoming scroller.

On Scrollers

On Scrollers

 2002-06-14 (last edition of the initial revision)

My grandfather taught me the energy of life goes in a circle, in a
perfect flow; balanced. He said, until I find my centre, my circle
will never be whole

~ The One

Huh, so finally, as promised; the tutorial on scrollers. BTW, all my "huh" sounds aren’t like
American huh, as in a question or as in a "oh yeah?", but rather phew, like a sigh. Have you
been waiting for this one? I hope you have, because it was a damn pain in the ass to write
the scroller program, even though it’s simple. It began with me reaching too high, also,
forgetting about the bitplane layout of the graphics memory. When I put a little lower
ambition level, for the sake of keeping it simple, things went smoother. Now, Luca Turilli
playing in Winamp, the mood is set, time to write. The people who already know how to do
scrollers will probably laugh their ass off at this clumsy scroller, which really is bad in every
way except learning the basic stuff, I’ll probably do a more advanced one later on; I’ve heard
that building on knowledge is good.

A few happy news first. I’ve gotten mail from three different people, excluding Maarten
Martens. Thanks guys, you know who you are! One mail from FrEd highlighted a few misses I
made, concerning the compatibility with Devpac 2. My initlib had a little bug. It works fine in
Devpac 3, but not in 2. Two lines had d0-7 in them, it really should read d0-d7, but it’s fixed
now. I know some other things may also be difficult with other assemblers than Devpac 3, so
if the code doesn’t work for you, just use Devpac 3. I have tested every piece of code with
that on an original Atari ST(e), so there should be no problem. Thanks go out to FrEd for
pointing this out, and also to mOdmate of Checkpoint for telling me a little about the
workings of $fffc02.

Yep, a scroller. I’m a bit unsure of where to start, but I guess I’ll just work from the top
down. What does a scroller do? Letters go from the right of the screen, to the left of the
screen (usually). New letters are brought in from the right, "outside" of the screen. How can
this be achieved? The screen memory needs to be moved "to the left", and then we need
information to bring in the new characters from the right. OK, this seems to build on an idea
to have letters stored as graphics. Hum, yes, we have a font collection in a degas file. In that
way, we’ll have letters in graphics format, we can take the information from the font file and
put it on the screen. Then, we move the screen memory to the left. Easy? No, damn hard for
a first timer at least.

Included in this tutorial should be a file called font.pi1, this is the font file, I stole it from
James Ingram’s demo tutorials, so I wouldn’t have to make my own. Immediately load this
up and look at it, either using Degas, the program from Chapter 6 or any other method.
Lucky lucky, lots of characters to choose from. Each character is 32 × 32 pixels big, resulting
in 10 characters per line. This is all well and fine, the next step is to actually know how to
point to the beginning of, for example, letter C. If we know where this letter begins, we can
put it on our screen simply by moving the data into the screen memory. Just as we did when
displaying a whole picture.

[image: tutorial 07 font]

Figure 6. font.pi1

The font picture is aligned with the ASCII table, meaning that it looks like the ASCII table
does. In the ASCII Table, by Stephen McNabb, you’ll find an ASCII
table, in which you can look up the number for each character. As you can see, space (the
first character in the font), begins at $20, then comes ! at $21 and so on. This means, that if
we take the ASCII value for a character, and subtract by $20, we’ll have the corresponding
number in the font. Hum, a test perhaps. C is at $43 in ASCII, subtract $20 makes $23,
which is 35 (decimal). There are 10 characters per line, so we skip to the fourth line, begin
counting; 0 (>), 1(?), 2(@), 3(A), 4(B), 5©, yay, right on! (remember to start counting from
0).

Now we need to know what address this is at. The way to do this is to put the beginning of
the font picture address in an address register, and increment by a number. Think of the font
as a coordinate system, then C would be at 3,5. We need to increment the pointer by a
certain value for each coordinate, this shouldn’t be to hard.

Each line is 160 bytes, and each character is 32 lines. This means that for every Y coordinate,
we need to increment the pointer by 32 × 160 bytes, right? Think about it, if we want *
which is on the second line (1,0), we need to point to the font address + 32 lines down. Each
character is 32 pixels wide, 16 pixels are 4 words, taking up 8 bytes, we need twice this. So
for each X coordinate, we need to increment the pointer by 16 bytes.

Does this seem right? Let’s try. We want letter C, at 3,5. Thus we should increment by
3×32×160 + 5×16 = 15440 bytes. C is about the middle of the screen and 15440 is about
half of 32000, so it seems safe to assume that the formula above is working. Question is,
how do we get the X and Y coordinates? We had a value for C, right, that was 35. The first
digit seems to be the Y coordinate, and the second the X coordinate. If we divide 35 by 10
we get 3.5. 3 is the quotient and 5 the remainder. The instruction divu (DIVide Unsigned)
puts the quotient in the lower word of a data register, and the remainder in the higher word.
swap is an instruction that swaps the low and high word in a data register. Great! We now
have what we need. The code looks like this:

 move.l #character, a0 ; points to character
 move.l #font+34, a1 ; points to pixel start

 move.b (a0), d0 ; put letter ascii value in d0

 add.b #-$20, d0 ; align asciin with font number
 divu #10, d0 ; 10 letters per row

 move.w d0, d1 ; d1 contains y value
 swap d0
 move.w d0, d2 ; d2 contains x value

 mulu #16, d2 ; 16 bytes for each letter
 mulu #32, d1 ; 32 lines per row
 mulu #160, d1 ; 160 bytes per row

 move.l #font+34, a0 ; put font screen start in a0

 add.l d2, d1 ; add x and y value together
 add.l d1, a0 ; a0 points to correct letter

 section data
font incbin font.pi1
character dc.b "C"

Since each character is an ASCII value, we only use a byte to represent it. If we put things
inside "", that means we want the ASCII value. So the message dc.b "C", means that
message is a byte containing the ASCII value for C. We could just as well have written
message dc.b $43, but this is more difficult to understand. Hopefully, the code will speak for
itself with the comments and the theory given above. This is not a complete program, but
just a code snippet to show the font part. More will follow.

We know how to point to the font, now we need to know how to shift the screen memory, in
order to achieve the scrolling effect. One would think that all it took was a big loop moving
bytes. Like so (a0 and a1 contain the address of the screen memory)

 add.l #1, a1 ; put a1 8 pixels ahead of a0
 move.l #159, d0 ; scroll a line
loop
 move.b (a1)+, (a0)+

For each loop we take the byte one byte ahead, and move it one byte to the left. This should
move 8 pixels each loop, right? Wrong! Totally wrong! The screen is made of 16 pixel
clusters, each cluster being 8 bytes long. So when you just barge in and move single bytes
like that, you’ll misalign the whole shit. Not only will the colours be misaligned, the pixels will
be as well. Consider this memory configuration.

	First byte
	Second byte
	

	%11000000

	%00000000

	first word

	%11000000

	%00000101

	second word

	%01000000

	%00000110

	third word

	%01100000

	%00000000

	fourth word

	%00000000

	…​

	fifth word

	

	$3F800000

	$00000642

	pixels

If we use the move loop from above, the first byte will drop out, the second byte will be
moved into the first byte, the first byte of the second word will go into the second byte of the
first word and so on, in the end, we get this.

	First byte
	Second byte
	

	%00000000

	%11000000

	first word

	%00000101

	%01000000

	second word

	%00000110

	%01100000

	third word

	%00000000

	%00000000

	fourth word

	

	$00000542

	$17400000

	pixels

Not really, the pixels we had before. So, in order to overcome this in an easy way we move
16 pixels each time. This will produce a very fast scroller, but an easy one to code for. If we
move 16 pixels, we won’t have to worry about getting misaligned bitplanes, since the 16 pixel
clusters will never be broken up, like they were above. a0 and a1 contains the screen
address, while a2 points to the character in the font.

 add.l #8, a1 ; put a1 16 pixels ahead of a0
 move.l #31, d1 ; 32 lines to scroll
 move.l #18, d0 ; 19 16 pixel clusters + font part
scroll
 move.w (a1)+, (a0)+
 move.w (a1)+, (a0)+
 move.w (a1)+, (a0)+
 move.w (a1)+, (a0)+ ; 16 pixels moved
 dbf d0, scroll ; keep moving 16 pixel clusters
 move.l #18, d0 ; reset loop counter
 move.w (a2), (a0)+
 move.w 2(a2), (a0)+
 move.w 4(a2), (a0)+ ; 16 pixels of the font
 move.w 6(a2), (a0)+ ; character moved in
 add.l #8, a1 ; increment screen pointer, align with
 ; a0
 add.l #160, a2 ; next line of font
 dbf d1, scroll ; do another line

This is all just a bunch of move words, and some adds to keep everything aligned. The first
move section will move 4 words from a1, which points one 16 bit cluster ahead of a0, to a0.
This is repeated 19 times. After this loop, a0 points to the beginning of the last 16 pixel
cluster, and a0 points to the beginning of the second line. For the last 16 pixel cluster, we
want information from the font, not from the screen. So here we move information from a2
into a0. Instead of post incrementing a2, I use indexes. After the font data is moved onto the
screen, I add 8 to a1, so that it will again be 16 pixels ahead of a0. Since a0 was incremented
during the font move part, and a1 was not. 160 is added to a2, so that the font pointer will
now point to the next line in the font. Repeat for 32 lines.

Now the two most important techniques have been covered, how to know where the
character is in the font, and how to scroll. Now we mix and match. In order to synchronize
the entire scroller to the VBL, I put a wait VBL trap in the beginning of the main loop. Then I
do my stuff, and in the end of the main loop, I check if the space bar is pressed, if it is, just
drop out of the loop. If space bar is not pressed, then the main loop will begin again, with a
VBL wait, making sure that the main loop is looped through at 50 times a second. You’ll
probably be wondering exactly how I determine whether the space bar is pressed.

This little piece will do the trick: cmp.b #$39, $fffc02. Uh, says you, looking at the ASCII table
(hopefully) and wondering how $39 can be space, when it should be $20. The $fffc02 part
can be easily guessed, this is probably where the last key press end up, but why $39? ASCII
deals with characters, and special characters like line feed and so. There’s also something
called scan codes. Every key on the keyboard has its value, its scan code, so you’ll be able to
determine what key was pressed. Look at the picture below:

[image: scancode]

Figure 7. Keyboard Scan Codes

While we’re still on the topic, I might as well give you the full detail. You can also check when
a key is released, not just pressed. When the key is released, the high bit of $fffc02 is set,
meaning you get a whole different value. Consider this.

 %00111001 $39 space pressed
%10111001 $b9 space released

So, if you cmp.b #$b9, then you check if space is released. This can be used in many fun
ways, like changing the background to red when space is pressed, then checking to see when
space is released and then restore background. Or accelerate a car in a car game until the
button is released, at which time you begin deceleration. I don’t know how often this is
updated or how fast you can really press keys. Say for example that you check $fffc02 every
VBL to see what key is pressed and released, suppose this dude is like Flash, and manage to
press a button, then release it and press another within 1/50 of a second, then you’d loose
the check for the release of the key, but I doubt you’ll have to worry about this. Back to
reality, here’s the scroller.

 jsr initialise

 movem.l font+2, d0-d7
 movem.l d0-d7, $ff8240

 move.w #2, -(a7) ; get physbase
 trap #14
 addq.l #2, a7
 move.l d0, screen ; store screen memory

main
 move.w #37, -(sp) ; wait vbl
 trap #14
 addq.l #2, sp

 cmp #0, font_counter ; check if new character in message
 bne has_character ; if not, skip get new character

 move.w #2, font_counter ; reset font_counter
; we need to point to a new characetr in the font

 move.l message_pointer, a0 ; pointer into the message
 clr.l d0 ; clear, just to be sure
 move.b (a0), d0 ; put letter ascii value in d0

 cmp #0, d0 ; end of message?
 bne not_end ; if not, branch

 move.l #message, message_pointer; reset message_pointer
 move.l message_pointer, a0
 clr.l d0 ; clear, just to be sure
 move.b (a0), d0 ; put letter ascii value in d0

not_end
; now we have a character in d0 for sure
 add.l #1, message_pointer ; point to next character

 add.b #-$20, d0 ; align ascii with font number
 divu #10, d0 ; 10 letters per row

 move.w d0, d1 ; d1 contains y value
 swap d0
 move.w d0, d2 ; d2 contains x value

 mulu #16, d2 ; 16 bytes for each letter
 mulu #32, d1 ; 32 lines per row
 mulu #160, d1 ; 160 bytes per row

 move.l #font+34, a0 ; put font screen start in a0

 add.l d2, d1 ; add x and y value together
 add.l d1, a0 ; a0 points to correct letter

 move.l a0, font_address ; store calculated pointer

has_character
 add.w #-1, font_counter

 move.l screen, a0
 move.l screen, a1
 move.l font_address, a2
 add.l #8, a1 ; put a1 16 pixels ahead of a0

 move.l #31, d1 ; 32 lines to scroll
 move.l #18, d0 ; 19 16 pixel clusters + font part
scroll
 move.w (a1)+, (a0)+
 move.w (a1)+, (a0)+
 move.w (a1)+, (a0)+
 move.w (a1)+, (a0)+ ; 16 pixels moved
 dbf d0, scroll ; keep moving 16 pixel clusters

 move.l #18, d0 ; reset loop counter

 move.w (a2), (a0)+
 move.w 2(a2), (a0)+
 move.w 4(a2), (a0)+ ; 16 pixels of the font
 move.w 6(a2), (a0)+ ; character moved in
 add.l #8, a1 ; increment screen pointer, align with a0
 add.l #160, a2 ; next line of font

 dbf d1, scroll ; do another line

 add.l #8, font_address ; move 16 pixels forward in font

 cmp.b #$39, $fffc02 ; space pressed?
 bne main ; if not, repeat main

 jsr restore

 clr.l -(a7)
 trap #1

 include initlib.s

 section data

font incbin font.pi1
screen dc.l 0
font_address dc.l 0
font_counter dc.w 0

message dc.b "A COOL SCROLLER! BUT A BIT FAST, "
 dc.b " SCROLLING 16 PIXELS EACH VBL."
 dc.b " THAT'S 2.5 SCREENS EACH SECOND!"
 dc.b " ", 0

message_pointer dc.l message

[image: tutorial 07 screenshot]

Figure 8. A scroller

There are really only two more small things that are new; the font counter and the message
pointer. Also take note how I put in the scrolling message, by just using lots of dc.b, and a 0
as an end control character. By changing the text here, you can obviously change the scroller
message. Perhaps to the well known "Hello World!", which I most deliberately avoided.

So what’s the font counter and message address? Well, the font counter keeps track of when
it’s time to calculate a new address for a new character. This is set to 2, because every
second loop, a whole character has been moved to the screen and the address for the next
character in the message will have to be calculated. Had we scrolled 8 pixels each VBL, the
font counter would have been set to 4 instead.

The message pointer is an index into the message. In order to know which character to get
next time, we must have some pointer into the message. The message pointer begins by
pointing to the message, which is good, since that’s where the first character is. The first
time through the main loop, the font counter will announce that an address for a new
character will have to be calculated. That address is calculated and stored. The message
pointer will then point to the next character in the scroller message, which is space, and so
on. When the whole message has been scrolled through, the value 0 (not character 0) will
be moved from the message. This is a signal that the message is at an end, and the message
pointer will be reset, once again pointing to the start of the message. I hope it’s
understandable, the one tricky part is all the tests and branches, just walk through them a
couple of times, slowly. You can use pen and paper for this, or the MonST.

We’ve begun to get somewhere. If you’ve paid attention so far, you’ll have acquired quite
some programming skills. There are still some basic things to cover, in order to be really self
sufficient (mainly timers, double buffering, sprites and bit manipulation) but you’re on a good
way. Now might be the time to look at alternative sources and learn something from there.
For example, you could begin to look at James Ingram’s demo coding tutorials. That was
where I began, I found them quite hard but now we’ve gotten more or less to the level
where he begins his stuff. That is that from me right now. Upon request from mOdmate of
Checkpoint, the next tutorial will probably be on timers, I think. This means we’ll be able to
remove the bottom and top borders, cool stuff!

Funnily enough James Ingram reached out in April 2022 and says the following:

So I wanted an old skool Atari font to do something,and google threw me this:
https://nguillaumin.github.io/perihelion-m68k-tutorials/_on_scrollers.html

Haha! So now I am going to use my own font, which I created myself years ago :)

I had a look at your code and I thought you might like a couple of tips, if you’re still interested in 68000.

If you look at the instruction timings, it is always faster to rotate than to multiple. So instead of

 mulu #8

I would always

 lsl #3

Adding "q" to the end of some instructions makes them faster to execute.:

 addq #8

executes faster than

 add #8

That’s because the addq command includes the number "8" in the same word as the instruction, whereas the "add"
instruction is followed by a word which contains the number to add.

The addq only works with numbers up to 16 (I think).

Your move 2(a2)+ instructions can be replaced with a single movem. And since you want to do the whole row, you don’t
need to worry about limiting your movems to the width of a letter. Just

 	movem.l	(a5)+,d0-7/a0-4
	movem.l	d0-7/a0-4,coun(a6)

as many times as you need.

Finally, I would pre-process the font and the scrolltext. The font would be re-arranged in memory so that I could grab
a character with a set of movem`s and then `movep` it onto the screen.

That’s all in my tutorial, if you want the details :D

Finally, if you fancy a challenge, I found a way to scroll the entire screen 8 bits per frame. It’s also in my
tutorial, which you already have :)

Cheers, and thanks again!

James Ingram

Of Scrolling 8 Pixels Per VBL Using Double Buffer

Of Scrolling 8 Pixels Per VBL Using Double Buffer

 2002-06-14 (last edition of the initial revision)

Be formless, shapeless, like water. Now you put water into a cup;
it becomes the cup. You put water into a bottle; it becomes the
bottle. You put it into a tea pot; it becomes the tea pot. Now water
can flow, or it can crash. Be water my friend.

~ Bruce Lee

In the last few days, I’ve had the great opportunity to get lots of introduction to the Atari
scene. mOdmate of Checkpoint told me about #atariscne, and since then he’s guided me
through the stuff, giving me links to good sites and generally telling me what I need to know
to orient myself. I’ve met some great people that have helped me understand things and
being a better coder. Also, let’s not forget the importance of Maarten Martens for converting
this text file to html and banging me on the head whenever I take a wrong step. I could not
write this stuff alone, lots of thanks to all of you who make this text possible. I also want to
thank God, for giving me the luck and opportunity to be where I am, my mother for giving
birth to me and always being there and all …​ (end of Hollywood speech)

In order to get an even better understanding of the bit planes, I’ve done an 8 pixel scroller.
The thing with this is that you must be careful not to misalign the bit planes, which we didn’t
have to worry about when scrolling 16 pixels per VBL. Since not to much have changed since
the 16 pixel scroller, I thought I’d cover some other stuff as well.

First, I need to cover the shift command in order to be able to tell you about double buffering
(there are more than one shift command, but they’ll be covered later). The shift command
will shift bits either left or right, as many "slots" as you want to. The command for shifting
left is lsl, meaning Logical Shift Left, and right is lsr for Logical Shift
Right. If you have a number in d0 and right shift, like so:

 move.l #%10110001, d0 ; d0 = 177
 lsr.l #2, d0

then d0 will contain:

 %00101100 44

all bits will jump two spaces to the right, and 0’s have moved in from the left. Also note that
this was the same as dividing 177 by 4 and throwing away the remainder. Left shifting will
move bits to the left, and move 0’s in from the right. Right shifting one is the same as
dividing by 2. Thus a lsr.l #2 is the same as divu.l #4, and a lsl.l #2 is the same as a mulu.l
#4. Only thing is that a shift is soooo much faster than a mulu or divu, but more on that
later. It’s very important to note how big the shift area is, if you have a data register filled
with bits, but only shift a word, lsr.b, only the first 8 pixels will be affected. Like so:

	
	Upper byte
	Lower byte

	d0 =

	%10101010

	%10101010

 lsr.b #4, d0

	
	Upper byte
	Lower byte

	d0 =

	%1010101

	%000001010

Note how the upper byte of the word was completely unchanged by the shift operation, since
we used a lsr.b operation.

Now we can go on with double buffering. This is an extremely important technique. The
screen is painted by an electron beam that goes from upper left, and then sweeps one
horizontal line, down to the bottom right, just as the screen coordinates. Now, what happens
if you start to make changes to the screen where the electron beam is painting? You will
experience flicker or a distorted line or any other horrible thing. In short, when you write to
screen memory, you’ll most likely interrupt the electron beam in its work.

It is possible to change the area of memory that is the screen memory, any area of memory
can be the screen memory actually. So for every VBL (or even often), we can change what
area of memory is the screen memory. A solution begins to crystallize. We have two screen
area sized areas of memory, one which is the actual screen memory (being shown on the
monitor) and the other works as a buffer.

What we do is to update the buffer, while leaving the other screen alone, in this way, nothing
will happen to the screen memory while the electron beam is painting. Then, just in the
beginning of the next VBL, we make the buffer the screen memory and the screen memory
the buffer. In this way, we will never paint to the actual screen memory. One can also call the
memory that is being displayed for the physical base, and the area of memory not being
displayed for the logical base. So far, we’ve gotten the address to the physical base by calling
trap #2 of the XBIOS, if you call trap #3, you’ll get the logical base. Usually, both of these
point to the same memory area.

Instead of getting the physical address from the Atari, we will now define our own area of
memory and input that address directly into memory. There’s only one important thing to
know about the screen memory; it must be on a 256 byte boundary (unless you have a STe).
What this means is that the start address of the screen memory must be a multiple of 256.
This can be achieved by clearing the lower byte of the address, meaning that you’ll need 256
bytes extra memory for your screen memory, so you can clear the lower byte. Why? Because
clearing away the byte will clear away anything not multipliable by 256, the size of a byte.

So, how do we make a memory area the screen memory? Smack up the Hardware
Register Listing, and search for something appropriate, like "screen". We see this.

	$FF8201

	byte

	Video screen memory position (high Byte)

	R/W

	$FF8203

	byte

	Video screen memory position (mid Byte)

	R/W

	$FF820D

	byte

	Video screen memory position (low Byte)

	R/W (Ste)

Sure, ok, seems to be what we need. The low byte in $ff820d is for STe’s only, and should be
cleared at all times to avoid trouble. Then the middle byte of the screen address goes into
$ff8203 and the high byte goes into $ff8201. In order to get the middle and high byte of the
screen address, we need to shift the address. By shifting down the eight bits constituting the
byte, we can easily move out bytes from the screen address by move.b commands.

	
	High byte

	Middle byte

	Low byte

	

	screen

	%00010111

	%01001101

	%10111110

	$174dbe

first we clear the low byte in order to put it on a 256 boundary.

 move.l #screen, d0
 clr.b d0

	
	High byte

	Middle byte

	Low byte

	screen

	%00010111

	%01001101

	%00000000

now we need to move the middle byte into $ff8203

 lsr.l #8, d0

	
	High byte

	Middle byte

	Low byte

	screen

	%00000000

	%00010111

	%01001101

 move.b d0, $ff8203

As you see, the middle byte gets shifted into the lower byte. With a move.b command the
only thing we move is the lowest byte of d0. Thus, we have isolated the middle byte by
shifting it into a more convenient position. Now for the last one.

 lsr.w #8, d0

	
	High byte

	Middle byte

	Low byte

	screen

	%00000000

	%00000000

	%00010111

 move.b d0, $ff8201

And that’s it. We have now cleared the lowest byte of the screen address, and moved the
middle and high bytes of it into the correct memory position. screen is now the screen
memory. The compact code snippet looks like this.

 move.l #screen1, d0 ; put screen1 address in d0
 clr.b d0 ; put on 256 byte boundary

 clr.b $ffff820d ; clear STe extra bit
 lsr.l #8, d0
 move.b d0, $ffff8203 ; put in mid screen address byte
 lsr.w #8, d0
 move.b d0, $ffff8201 ; put in high screen address byte

 section bss
 ds.b 256 ; 256 byte clear buffer
screen ds.b 32000 ; the screen

Now, this doesn’t make for any double buffer at all, since we’re only using one screen. In
order to achieve double buffering, we need two screen areas, and two pointers to point to
each area. In each VBL, one screen is made into screen memory, and then the pointers are
flipped so that the other screen is made screen memory for next VBL. This really makes what
you see on the screen appear 1/50th of a second slower than what you draw.

 move.l #screen1, d0 ; put screen1 address in d0

 ; prepare addresses
 ; make next and last point to screen1 and screen2
main
 ; wait VBL

 move.l next, d0
 ; make address in d0 screen address

 move.l last, a0
 move.l next, a1 ; load screens
 move.l a1, last ; and flip them for next time around
 move.l a0, next ; double buffering :)
; loads the screen addresses and flips them around

 ; do your stuff, like putting graphics to the address in a1

 ; repeat main loop

last dc.l 0
next dc.l 0

 ds.b 512
screen1 ds.b 32000
screen2 ds.b 32000

I also thought we might mention timing as well. This is quite the issue really, as you must
have understood, you can’t perform an infinite number of instructions. Important information
is in two appendixes. Motorola 68000 Instruction Execution Times
explains how much time it takes to do each instruction. This can vary greatly, for example, a
division takes way over 100 clock cycles, and a shift takes under 10, so you see, it’s a good
thing to replace your divu 's with lsl 's if possible. Also, when you can, work with byte or word
size, instead of long, since this saves some time also. Clock cycle is the quantity in which
"time" is measured. Each instruction takes a certain amount of clock cycles.

Pixel Timings, was extracted by me from the ST
Internals text file by Jim Boulton. One interesting thing to note there is the amount of clock
cycles per VBL; 160256. This is a very exact number, and if your main loop ever takes more
time than that, you’re screwed (if you work with VBL main loops as we’ve done so far that is).
One way to get a graphical pointer of how much time your main routine does take, is to
change the background colour just at the start of the routine, then change it back in the end.

Let’s say we have a routine that takes 80000 clock cycles, our original background is black,
but in the beginning of our main loop, we set it to red. What will happen is that the electron
beam will paint red background, but when our 80000 clock cycles worth of instructions have
taken place, the background is switched back to black, which means that for the time it takes
to wait for the next VBL, the electron beam will paint black. So, in this case, the screen would
be half red background and half black background. If we use this technique, we’ll see exactly
how much time our main routine takes. The example program in this tutorial takes up most
of the processor, which leaves little time for other stuff to be done. Granted, the scroller is
completely un-optimized.

Phew, now we have covered lots of small things of big importance. Finally, now comes the 8
pixel scroller part. Just look at the source code, it’s well commented. Nah, I’m just kidding
with you, of course I’ll explain. Since we now want to scroll 8 pixels, this means for starters
that we need to move bytes. The first byte represents the first 8 pixels, and the second the
coming 8 pixels. Then, the third word again has to do with the first 8 pixels, and the fourth
word has to do with the 8 coming pixels and so on. Thus, we cannot simply barge in and do
some scroll loop. We need to move every second byte.

	Index

	First byte

	Index

	Second byte

	

	0

	%11000000

	1

	%00000000

	first word

	2

	%11000000

	3

	%00000101

	second word

	4

	%01000000

	5

	%00000110

	third word

	6

	%01100000

	7

	%00000000

	fourth word

	0-7

	$3F800000

	8-15

	$00000642

	pixels

	Index

	First byte

	Index

	Second byte

	

	8

	%00000110

	9

	%00100000

	first word

	10

	%00000010

	11

	%00100100

	second word

	12

	%00000000

	13

	%10000010

	third word

	14

	%00100010

	15

	%00010000

	fourth word

	16-23

	$008001B0

	24-31

	$40380240

	pixels

It is tempting to read the memory top down, but this is not so, it is to be read from left to
right. So index 5 for example is the second byte in the third word, and affects pixels 8 - 15.
The memory without comments look like this, split into bytes for ease of reading.

 %11000000, %00000000, %11000000, %00000101, %01000000, %00000110, %01100000,
%00000000, %00000110, %00100000, %00000010, %00100100, %00000000, %10000010,
%00100010, %00010000, ...

So in order to scroll 8 pixels, index 0, 2, 4 and 6 will de dropped, because they represent the
first 8 pixels. Then index 1, 3, 5 and 7 will be moved into index 0, 2, 4 and 6. Then index 8,
10, 12 and 14 will be moved into index 1, 3, 5 and 7. Then index 9, 11, 13 and 15 will be
moved into index 8, 10, 12 and 14. This will make pixels 0-7 to drop, 8-15 to be moved into
0-7, 16-23 will be moved into 8-15 and 24-31 will move into 16-23. After these move
instructions, the memory will look like this

	Index

	First byte

	Index

	Second byte

	

	0

	%00000000

	1

	%00000110

	first word

	2

	%00000101

	3

	%00000010

	second word

	4

	%00000110

	5

	%00000000

	third word

	6

	%00000000

	7

	%00100010

	fourth word

	0-7

	$00000642

	8-15

	$008001B0

	pixels

	Index

	First byte

	Index

	Second byte

	

	8

	%00100000

	9

	…​

	first word

	10

	%00100100

	11

	…​

	second word

	12

	%10000010

	13

	…​

	third word

	14

	%00010000

	15

	…​

	fourth word

	16-23

	$40380240

	24-31

	…​

	pixels

It is of the utmost importance that you realize why this is so. If you do not, set yourself down
and work it out until you get it and understand it 100%. Without understanding this, you’ll
not understand bit planes, without understanding bit planes, you can’t understand how the
graphics on the Atari works. Expressed in code, this will be (a0 points to screen memory)

 move.b 1(a0), (a0)
 move.b 3(a0), 2(a0)
 move.b 5(a0), 4(a0)
 move.b 7(a0), 6(a0) ; 8 pixels moved
 move.b 8(a0), 1(a0) ; watch carefully!
 move.b 10(a0), 3(a0)
 move.b 12(a0), 5(a0)
 move.b 14(a0), 7(a0) ; first 4 word area filled
 move.b 9(a0), 8(a0) ; start of second 4 word area
 move.b 11(a0), 10(a0)

and so on. So first, four bytes are moved just one step to the left, but then you need to go
into the next 4 word area, to fetch the bytes that go into the second area of the first 4 word
area and so on. This is the theory behind 8 pixel scrolling, I don’t think I can explain it better
than that. This is the source code for the scroller.

 jsr initialise

 move.l #screen1, d0 ; put screen1 address in d0
 clr.b d0 ; put on 256 byte boundary
 move.l d0, next ; store address
 add.l #32000, d0 ; next screen area
 move.l d0, last ; store address

 movem.l font+2, d0-d7
 movem.l d0-d7, $ff8240 ; palette moved in

main
 move.w #37, -(sp) ; wait vbl
 trap #14
 addq.l #2, sp

 move.l next, d0

 clr.b $ffff820d ; clear STe extra bit
 lsr.l #8, d0
 move.b d0, $ffff8203 ; put in mid screen address byte
 lsr.w #8, d0
 move.b d0, $ffff8201 ; put in high screen address byte

 move.w #$707, $ff8240

 cmp #0, font_counter ; check if new character in message
 bne has_character ; if not, skip get new character

 move.w #4, font_counter ; reset font_counter
; we need to point to a new character in the font

 move.l message_pointer, a0 ; pointer into the message
 clr.l d0 ; clear, just to be sure
 move.b (a0), d0 ; put letter ascii value in d0

 cmp #0, d0 ; end of message?
 bne not_end ; if not, branch

 move.l #message, message_pointer ; reset message_pointer
 move.l message_pointer, a0
 clr.l d0 ; clear, just to be sure
 move.b (a0), d0 ; put letter ascii value in d0

not_end
; now we have a character in d0 for sure
 add.l #1, message_pointer ; point to next character

 add.b #-$20, d0 ; align ascii with font number
 divu #10, d0 ; 10 letters per row

 move.w d0, d1 ; d1 contains y value
 swap d0
 move.w d0, d2 ; d2 contains x value

 mulu #16, d2 ; 16 bytes for each letter
 mulu #32, d1 ; 32 lines per row
 mulu #160, d1 ; 160 bytes per row

 move.l #font+34, a0 ; put font screen start in a0

 add.l d2, d1 ; add x and y value together
 add.l d1, a0 ; a0 points to correct letter

 move.l a0, font_address ; store calculated pointer

has_character
 add.w #-1, font_counter

 move.l last, a0
 move.l next, a1 ; load screens
 move.l a1, last ; and flip them for next time around
 move.l a0, next ; doubble buffering :)
 move.l font_address, a2 ; font address

 move.l #31, d1 ; 32 lines to scroll
 move.l #18, d0 ; 19 16 pixel clusters + font part
scroll
 move.b 1(a0), (a1)
 move.b 3(a0), 2(a1)
 move.b 5(a0), 4(a1)
 move.b 7(a0), 6(a1) ; 8 pixels moved
 move.b 8(a0), 1(a1) ; watch carefully!
 move.b 10(a0), 3(a1)
 move.b 12(a0), 5(a1)
 move.b 14(a0), 7(a1) ; first 4 word area filled

 add.l #8, a0 ; jump to next 4 word area
 add.l #8, a1 ; jump to next 4 word area
 dbf d0, scroll ; keep moving 16 pixel clusters

 move.l #18, d0 ; reset loop counter

 move.b 1(a0), (a1)
 move.b 3(a0), 2(a1)
 move.b 5(a0), 4(a1)
 move.b 7(a0), 6(a1) ; 152 pixels scrolled

 move.b (a2), 1(a1) ; now last 8 pixels from font
 move.b 2(a2), 3(a1)
 move.b 4(a2), 5(a1)
 move.b 6(a2), 7(a1) ; 8 pixels from font

 add.l #8, a0 ; point to beginning of next line
 add.l #8, a1 ; point to beginning of next line
 add.l #160, a2 ; next line of font
 dbf d1, scroll ; do another line

 add.l #1, font_address ; next byte in font
 cmp #2, font_counter ; see if it's time to change
 bne font_increment
 add.l #6, font_address ; align to next 16 pixels
font_increment

 move.w #$0, $ff8240

 cmp.b #$39, $fffc02 ; space pressed?
 bne main ; if not, repeat main

 jsr restore

 clr.l -(a7)
 trap #1

 include initlib.s

 section data

font incbin font.pi1

screen dc.l 0

font_address dc.l 0

font_counter dc.w 0

message dc.b "A COOL SCROLLER! MOVING 8 PIXELS PER VBL "
 dc.b "AND USING DOUBBLE BUFFERING ", 0

message_pointer dc.l message

next dc.l 0
last dc.l 0

 section bss

 ds.b 256
screen1 ds.b 32000
screen2 ds.b 32000

[image: tutorial 08 screenshot]

Figure 9. A betterscroller

Not too much has been changed since the 16 pixel scroller. In the beginning, there’s the code
for setting up two screen areas. Then, in the main routine, we put one screen address in.
Notice also how the font_counter is now 4 instead of 2, because we only need new font data
every fourth VBL. The scroller part however is completely new, not surprising is it? It begins
with loading both screen areas into a0 and a1, and then flips them for next time around. Data
is moved as described above for 19 loops, this means 304 pixels are moved, the last 16 need
special care though.

First 8 pixels scrolled as usual, but the last 8 must come from the font. This is also not to
strange, since every second byte is moved into the second bytes of the words on the screen.
Then 1 is added to the font address, to point to the second bytes in the words. However, this
won’t quite do, as you may know. The step from the second byte of the first 16 pixels to the
first byte of the coming 16 pixels is a bigger jump than 1, as described above.

In order to make this bigger step, I test the font_counter, to see if it’s time, and then add
another extra 6 to the font, making it point to the right place. If we don’t do this extra
addition, 16 pixels will be moved in from the font ok, but when pixels 16 - 24 are about to be
moved, the font address will point to index 2 (meaning the first 8 pixels again) instead of
index 8 into the font memory. Just scroll up to the memory example, then work through the
scroll loop on a piece of paper or in your head and it will hopefully become obvious. If it
doesn’t, mail me.

That, I think, was that. The big problem here is the understanding and alignment of bytes in
the bit plane. What to keep in mind really is that first, take every second byte, then jump a
bit to get on the next 16 pixel boundary, then continue in that way. Indexing goes like 0, 1,
8, 9, so to speak. Thus, every second time there’s a little gap. Since I didn’t do any timers
this tutorial, maybe we’ll do them next time.

Of Revealing The Unseen And Expanding Our Consciousness Without The Use Of Illegal Drugs

Of Revealing The Unseen And Expanding Our Consciousness Without The Use Of Illegal Drugs

 2002-07-06 (last edition of the initial revision)

In strategy it is important to see distant things as if they were
close and to take a distanced view of close things. It is important
in strategy to know the enemy’s sword and not to be distracted by
insignificant movements of his sword. You must study this. The
gaze is the same for single combat and for large-scale strategy.

~ Book of Five Rings Miyamoto Musashi

It’s been a while since the last tutorial, almost a month actually,
sorry for that. I’ve had a rough class in school, but that’s no excuse
since I found lots of time to play computer games. I just haven’t felt
up to it. Now, summer holidays are on and I plan on coding some for
myself, besides the tutorials, but since I need the knowledge myself,
you can look forward to a tutorial on sprites and how to handle the
joystick (with that, one could make a nice shoot-em-up game, yay). This
tutorial however, will, as promised some while back, cover timings. To
have some practical example to work with, I’ll show you how to do the
neat trick of killing the upper and lower border.

But now for something completely different: Boolean algebra. Boolean
algebra states that the world is neatly and nicely built up of true or
false, black or white, good or evil, 1 or 0. The last bit there applies
to us as computer programmers. Boolean algebra is all about bit
manipulation. There are a few so called logical operands, that you can
use to compare two bits to each other, and get the result true or false
(1 or 0) from the equation. The ones I will cover here are AND, OR and
EOR (exclusive or). In each case, there are two bits involved, resulting
in four different combinations of those bits, this is to hard to put in
words, see below for how it works.

	AND

	bit 1

	bit 2

	result

	1

	1

	1

	0

	0

	0

	1

	0

	0

	0

	1

	0

	OR

	bit 1

	bit 2

	result

	1

	1

	1

	0

	0

	0

	1

	0

	1

	0

	1

	1

	EOR

	bit 1

	bit 2

	result

	1

	1

	0

	0

	0

	0

	1

	0

	1

	0

	1

	1

For an AND operation to be true, both operands need to be true (in programming lingo, that
means that the result of an and operation is 1 if both bits are 1). For an OR operation to be
true, either one or both of the operands must be true. For an EOR operation to be true,
either one, but not both, of the operands must be true.

These kinds of operations become extremely important when doing stuff to the screen
memory later on. For example, imagine you have a screen filled with colour (all 1’s in the
screen memory), and you want to clear out just that one bit in a certain place. You then
prepare a so called mask, and AND it in. A mask really is a quantity, that is to be applied in a
logical operation on another quantity, in order to produce the result you want, that is one
hard and stupid way of explaining it. Example again, in this example, we want to clear the
most significant bit and keep the others intact.

	Mask

	%01111111

	Memory

	%11111111

	and mask, memory

	%01111111

When performing AND here, you just compare bits one after another, in the most significant
bit, the and operation becomes false, thus the result is 0, and in all other cases, it’s true. So
by having this mask, and ANDing it with the screen memory, we have a good way of clearing
away bits, we could create a raster by using a %10101010 mask.

Each operation, that is AND, OR and EOR, is good for different things. As we have seen, AND
is good for clearing bits. EOR is good for many things, but the most obvious one is flipping
bits, if you EOR a bit with 1, that bit will always "flip" (go from 1 to 0, or 0 to 1). OR is good
when you want to set some bits, no matter what value they had before, it’s called setting a
bit when you make it 1, or true. So AND clears, OR sets and EOR flips, that really covers
most things that need to be done. Of course, you can most likely come up with devious plots
to do different things than the ones we’ve gone through here.

Now, onto timings! When an exception occurs, normal program execution halts and the ST
looks at a certain vector (memory position) depending on the kind of exception, and then
executes what it finds there. What this means is that when an exception occurs (exceptions
are "special events") the Atari looks for an address pointer at a given address, and jumps
there. For example, when an address error occurs, there is an address error exception. The
address at $00c is the address error exception address, so every time there is an address
error, the ST will jump to the address found at $00c. This address, we can change ourselves.

 ; into supervisor mode
 move.l $00c, -(a7) ; backup address error vector
 move.l #address_error, $00c ; put our own routine there

 ; make address error occur for example, an uneven address call

 move.l (a7)+, $00c ; restore address error vector

 ; into user mode

 ; exit

address_error
; our own address error routine, replacing the normal address error routine
; output error text, or do something else, freedom of choice
 rte ; return from exception

In normal cases, when there is an address error, there will be three bombs on the
screen, but with the little program above, we can change what happens when an address
error occurs. We could make the address error routine do anything, like changing background
colour; quite fun, every time there is an address error, instead of three bombs, the
background colour changes. The program above won’t really work, some things are missing,
you will replace the bombs with some effect of yours, but the ST will probably hang in all
sorts of ways, it’s just provided as a demonstration. As a side note, whenever an exception
occurs, the status of the ST is also saved at $384 and a bit forward, you can read exactly
about that in "ST Internals" pp. 235-237. The "ST Internals" is a great book by Abacus
Software, that describes much of the hardware of the ST.

The ST has several timing pulses, that generate exceptions, this means that we can control
these timing pulses and make them work for us. I’ll explain the simplest one, the $70 vector.
Every VBL, an exception occurs and the ST jumps to the address stored at $70. So instead of
using the old way we’ve been using with doing a VBL check at the start of our main routine,
we can put our main routine in the $70 vector, because it will start every VBL! All exceptions
must end with a rte command, ReTurnException, compare this to the rts command. Here’s a
little pseudo code on the usage of the $70 vector.

 ; into super mode
 move.l $70, old_70 ; backup $70
 move.l #main, $70

 ; wait key press

 move.l old_70, $70 ; restore $70

 ; out of super mode
 ; end program

main
 ; do stuff
 rte

 dc.l old_70

The thing here which might seem a bit strange is the wait key press and then just a clean
exit. Well, the thing is that once we hook up the $70 vector, the main routine will be
executed every VBL, so while the ST waits for a key to be pressed, the main routine will
execute. In a bigger program, you can start off by hooking up, say a music routine on the
$70 vector, then load in lots of stuff from disk, meanwhile, the music will play, then after
loading is finished, you change the $70 vector to the real program so to speak. Endless
possibilities ☺

Oh, btw, the routine may not take more than 1/50th of a second to perform, because if it
does, the ST will call the routine again, while you are still executing it and that won’t work.
Use the background colouring method from the last tutorial to see how much time your
routine takes. Also, you must backup all your registers and restore them at start and finish of
the $70 routine, otherwise your computer might crash for some strange reasons. Here’s how
to do that really simple, by pushing and popping them on and off the stack.

 vbl
 movem.l d0-d7/a0-a6, -(a7) ; backup registers
 ; ... ; do stuff
 movem.l (a7)+, d0-d7/a0-a6 ; restore registers
 rte ; exit vbl routine

Btw, using the $70 vector for your main instruction is slightly faster than the technique we
used before. There is a little chip in the ST that is called MFP, for Multi Functional Peripheral,
it can do lots of cool stuff, but right now we’re interested in its timers, there are four timers
that control timing pulses, and we will be interested in looking at one of them; Timer B. This
is the complete list of the MFP registers, all are 8 bits.

	address
	register

	$fffa01

	parallel port

	$fffa03

	Active Edge register

	$fffa05

	Data direction

	$fffa07

	Interrupt enable A

	$fffa09

	Interrupt enable B

	$fffa0b

	Interrupt pending A

	$fffa0d

	Interrupt pending B

	$fffa0f

	Interrupt in-service A

	$fffa11

	Interrupt in-service B

	$fffa13

	Interrupt mask A

	$fffa15

	Interrupt mask B

	$fffa17

	Vector register

	$fffa19

	Timer A control

	$fffa1b

	Timer B control

	$fffa1d

	Timer C & D control

	$fffa1f

	Timer A data

	$fffa21

	Timer B data

	$fffa23

	Timer C data

	$fffa25

	Timer D data

	$fffa27

	Sync character

	$fffa29

	USART character

	$fffa2b

	Receiver status

	$fffa2d

	Transmitter status

	$fffa2f

	USART data

these are the vectors

	$134

	Timer A vector

	$120

	Timer B vector

To make things difficult fore some strange reason, Atari decided that the names given to the
MFP registers would be misnomers, at least I think they are. As I said, there are four timers.
The timers share some registers, here’s how that’s broken down.

	Timer A

	all of

	$fffa19

	Timer A control

	$fffa1f

	Timer A data

	bit 5 of

	$fffa07

	Interrupt enable A

	$fffa0f

	Interrupt in-service A

	$fffa13

	Interrupt mask A

	Timer B

	all of

	$fffa1b

	Timer B control

	$fffa21

	Timer B data

	bit 0 of

	$fffa07

	Interrupt enable A

	$fffa0f

	Interrupt in-service A

	$fffa13

	Interrupt mask A

	Timer C

	bit 5 of

	$fffa09

	Interrupt enable B

	$fffa11

	Interrupt in-service B

	$fffa15

	Interrupt mask B

So you see, timer A and B share some registers, and only use one bit in those shared
registers. OK, that’s a long list, but we don’t have to worry about to many of those addresses.
We’ll only be using enable A, mask A, mask B, Timer B control, Timer B data and two vectors;
$70 and $120, if that’s of any comfort. Right now, you are probably wondering your ass off,
that’s ok, I did too the first time I read this.

If you wonder about the MFP, and exactly where it is physically in the ST, it’s not necessary
to know. You access the timer addresses just as you would any other address. The ST has
many small chips that do stuff, like controlling the joystick, the sound and so on. The only
thing you need to know to handle them is where they are in memory, every device is
"mapped" to memory, so just think about the ST as one big list of memory positions, by
changing the memory, you change the way the chips inside the ST work.

It really is due time to do something practical with all of this. Timers A and B can be in one of
many modes, controlled by Control A and Control B respectively. For Timer B, the most
interesting one is #8, event count mode. When Timer B is in event count mode, it will
interrupt for every Nth scan line, where N is the number put in Timer B data (thus 2 means
every second scan line, 1 means every scan line). So if we put Timer B in event count mode,
put number 1 in Timer B data, then the instructions found at $120 will be executed on every
scan line, very much like $70 will be executed every VBL. For this reason, Timer B is also
called HBL, Horizontal BLank.

Now this is interesting and useful, finally. In order to turn timer B on, we must set bit 5 in
both Enable A and Mask A. To manipulate certain bits we use the commands bset, for Bit SET
and bclr for Bit CLeaR. Here’s how we actually do to make the ST jump to a certain address
every scan line.

 clr.b $fffffa1b ; disable timer b
 move.l #timer_b, $120 ; move in my timer b address
 bset #0, $fffffa07 ; turn on timer b in enable a
 bset #0, $fffffa13 ; turn on timer b in mask a
 move.b #1, $fffffa21 ; number of counts, every scan line
 move.b #8, $fffffa1b ; set timer b to event count mode

Now the address at #timer_b will be jumped to every scan line. What really fires away Timer
B is the activation of the Timer B Control ($fffffa1b) when we put it in event count mode.
Whenever we exit a Timer B exception, we must tell the ST a bit more specifically than when
we exit from a $70 exception. We have to clear the 0 bit in in-service A, like this:

 bclr #0, $fffffa0f ; tell ST interrupt is done
 rte ; return from exception

You must also back up all registers you plan to use in the interrupt, or you’ll once again get a
crash. So finally, we know how to use Timer B at least, and we have the power to know
exactly at what scan line we’re at (do we really understand this?). It might be very frustrating
with all those addresses and how they work and so, actually, it’s not so much to understand,
rather just accept. When we put certain values into these registers, stuff will happen,
memorize the addresses to make life easier, and just go about your work.

So how do we kill borders? This also is somewhat "just do it and realize it works". In order to
kill the top and bottom border, you change from PAL (Phase Alternating Line) to NTSC
(National Television Standards Committee) exactly on the correct scan line, then wait some
for the effect to kick in and then back again. For killing the top border, it’s the first scan line,
for killing the bottom border, it’s the last scan line.

For killing the top border, you just wait some, about 15000 clock cycles, which will put the
electron beam on the first scan line and then toggle PAL/NTSC, for killing the bottom border
we check when we’re on the last scan line, and toggle PAL/NTSC.

Did someone say toggle and check for scan line? Yes someone did (that was me), and
haven’t we just learned how to do just these things; an exclusive or and Timer B will do the
trick! Now we just need one more thing; how to change between PAL and NTSC, it’s probably
in memory somewhere, so whip out Hardware Register Listing,
by Dan Hollis, and do a search.

The synchronization mode is controlled by bit 1 at address $ff820a. If this bit is 1, the system
is in PAL (50Hz) mode, and if it’s 0 the system is in NTSC (60Hz) mode. Even though this will
work and kill the borders, there will be lots of flickering due to Timer C and other interrupts
interfering. The reason for the flicker is that the interrupts will interfere with our time critical
calculations. To disable Timer C, just clear bit 5 of Mask B, to disable all interrupts, we have
to mess around some with the status register.

The status register is made up of 16 bits, the first 8 bits being the user bits and the next 8
the system bits. The user bits are so called flags, and record the result of the latest
operation. The system bits control interrupts, a trace bit and the supervisor bit.

	Bit
	Name

	0

	Carry flag

	1

	Overflow flag

	2

	Zero flag

	3

	Negative flag

	4

	eXtended flag

	8

	Interrupt

	9

	Interrupt

	10

	Interrupt

	13

	Supervisor bit

	15

	Trace bit

The carry flag is set when the result of an arithmetic operation is too big to fit, this is the
same as the little memory tag used by humans when adding or multiplying with pen and
paper. Say we want to add a number and put it in d0.b, and the result is %100000000 =
256, 9 bits won’t fit in d0.b, so d0.b will contain all zeros and the carry flag will be set. Also
set when a borrow occurs in a subtraction. The overflow flag is set when the result of an
arithmetic operation is too high to fit in the destination, like the add example above. The zero
flag is set when the result of an operation is zero. The negative flag is set when the result is
negative. The extended flag is as the carry flag in arithmetic operations, otherwise it can
serve special functions given for each instruction.

Note in all the flags the difference between arithmetic operations and other operations. The
trace flag is set when the computer is in trace mode, as it is when debugging, performing
only one instruction at a time.

Depending on how the interrupt bits are set, the ST will accept different interrupt levels. In
our case, the only interesting interrupt level is when all bits are set, because then all
interrupts are disabled. So, we want to set bit 8, 9 and 10, but not touch any of the other
bits. An OR operation has the power to set some bits, and leave all other alone. By ORing the
status register with %0000011100000000, we make sure that bits 8 - 10 are set, and that all
other bits are left as they were. In order not to have to write that cumbersome number each
time, we instead use $0700, which is the same number. Of course, the status register must
also be backed up. I’m tired of all theory, so I’ll just drop all source code in your face right
now and go through it.

If you are using an emulator, make sure to use a European TOS. This program assumes that
the ST is using a 50Hz PAL video mode and will not work with 60Hz NTSC machines or emulators with a
US TOS running at 60Hz.

 jsr initialise

 movem.l picture+2, d0-d7 ; put picture palette in d0-d7
 movem.l d0-d7, $ff8240 ; move palette from d0-d7

 move.l #screen, d0 ; put screen1 address in d0
 clr.b d0 ; put on 256 byte boundary
 move.l d0, a0 ; a0 points to screen memory

 clr.b $ff820d ; clear STe extra bit
 lsr.l #8, d0
 move.b d0, $ff8203 ; put in mid screen address byte
 lsr.w #8, d0
 move.b d0, $ff8201 ; put in high screen address byte

 move.l #picture+34, a1 ; a1 points to picture

 move.l #11199, d0 ; 320*280 / 8 - 1
loop
 move.l (a1)+, (a0)+ ; move one longword to screen
 dbf d0, loop

 move.l #backup, a0 ; get ready with backup space
 move.b $fffa07, (a0)+ ; backup enable a
 move.b $fffa13, (a0)+ ; backup mask a
 move.b $fffa15, (a0)+ ; backup mask b
 move.b $fffa1b, (a0)+ ; backup timer b control
 move.b $fffa21, (a0)+ ; backup timer b data
 add.l #1, a0 ; make address even
 move.l $120, (a0)+ ; backup vector $120 (timer b)
 move.l $70, (a0)+ ; backup vector $70 (vbl)
;
 bclr #5, $fffa15 ; disable timer c
 clr.b $fffa1b ; disable timer b
 move.l #timer_b, $120 ; move in my timer b address
 bset #0, $fffa07 ; turn on timer b in enable a
 bset #0, $fffa13 ; turn on timer b in mask a

 move.l #vbl, $70

 move.w #7, -(a7) ; wait keypress
 trap #1
 addq.w #2, a7

 move.l #backup, a0
 move.b (a0)+, $fffa07 ; restore enable a
 move.b (a0)+, $fffa13 ; restore mask a
 move.b (a0)+, $fffa15 ; restore mask b
 move.b (a0)+, $fffa1b ; restore timer b control
 move.b (a0)+, $fffa21 ; restore timer b data
 add.l #1, a0 ; make address even
 move.l (a0)+, $120 ; restore vector $120 (timer b)
 move.l (a0)+, $70 ; restore vector $70 (vbl)

 jsr restore

 clr.l -(a7)
 trap #1

vbl
 move.w sr, -(a7) ; backup status register
 or.w #$0700, sr ; disable interrupts
 movem.l d0-d7/a0-a6, -(a7) ; backup registers

 move.w #1064, d0
pause
 nop
 dbf d0, pause ; about 15000 cycles pause

 eor.b #2, $ff820a ; toggle PAL/NTSC
 rept 8
 nop ; wait a bit ...
 endr ; ... for effect to kick in
 eor.b #2, $ff820a ; toggle PAL/NTSC back again

 clr.b $fffa1b ; disable timer b
 move.b #228, $fffa21 ; number of counts
 move.b #8, $fffa1b ; set timer b to event count mode

 movem.l (a7)+, d0-d7/a0-a6 ; restore registers
 move.w (a7)+, sr ; restore status register
 rte ; finnished interrupt

timer_b
 movem.l d0/a0, -(a7) ; backup registers
 move.l #$fffa21, a0 ; timer b counter address
 move.b (a0), d0 ; get timer b count value

pause_b
 cmp.b (a0), d0 ; wait for it to change
 beq pause_b ; EXACTLY on next line now!

 eor.b #2, $ff820a ; toggle PAL/NTSF
 rept 8
 nop ; wait a bit ...
 endr ; ... for effect to kick in
 eor.b #2, $ff820a ; toggle PAL/NTSC back again

 movem.l (a7)+, d0/a0 ; restore registers
 bclr #0, $fffa0f ; tell ST interrupt is done
 rte ; exit interrupt

 include initlib.s

 section data

picture incbin kenshin.pi1

 section bss

 ds.b 256
screen ds.l 11200

backup ds.b 14

[image: tutorial 09 screenshot]

Figure 10. No top and bottom border

Phew, that was some. Nice and gentle walkthrough. First, just as usual, just initialise screen
and so on. The picture is 320×280 pixels, instead of the normal 320×200. For compatibility
reasons, I did it in Degas format, so you’ll have no problem looking at it in Degas, but you’ll
not see the last 80 scan lines. With the borders killed, my guess is that we’ll se about 270 or
so scan lines, a bit depending on monitor, perhaps a bit less.

After the picture is loaded into the screen, I back up all the registers used, it’s essential to
return to the state before the program was run. As you see, the backup is a little storage
area of 14 bytes that is loaded into a0, and then data is moved in. It only backs up 13 bytes
of data, but it starts off by backing up 5 bytes of data, putting it on an uneven address, that
means that the two addresses which are then backed up, will be on uneven addresses, which
is bad. So after the five bytes, I add one to a0 in order to put it on an even address, so the
storage area needs to be 14 bytes in order to handle the extra empty byte.

Then, disable Timer C, and Timer B. I only disable Timer C and do nothing more with it, with
Timer C on, there would be disturbances due to the critical timing of the border killing. Put
the correct address in the Timer B vector, and then enable Timer B by setting the correct bits
in Enable A and Mask A. Next, kickstart the main routine (here called vbl) and just wait for a
key press. After the key press, everything is restored and a clean exit performed.

The VBL routine starts off by backing up the status register and disabling all interrupts, then
it continues by waiting. By my calculation, we are waiting for exactly 15074 clock cycles. nop,
NoOPeration, is a command that does exactly nothing but take 4 clock cycles. Backing up the
status register is a move instruction, that takes 12 clock cycles, and an or instruction on
memory takes 8 clock cycles if it’s word sized. A movem from registers to a pre-decremented
memory position takes 8 clock cycles, plus 10 per register moved since we use long-word
size, and each dbf takes 10 clock cycles. This should add up to 12 + 8 + 8 + 10 × 15 + (10

4) * 1064 = 15074 clock cycles. Since I just took this method from James Ingram’s tutorials,
I haven’t really experimented with it and don’t know exactly how far you can stretch it (that
is, what happens if you delay by say 15070 clock cycles instead).

Now comes the part that actually does anything, first I toggle the second bit at $ff820a, by
an exclusive or operation, then wait a bit and toggle back. The rept, endr commands is a way
to tell the assembler that the lines between these two commands should be repeated for so
many times. This has no effect on the program when actually running, it’s as though I’d
written nop eight times in a row, but this is easier to read. Thus, I wait for 8 × 4 = 32 clock
cycles between the synchronization changes.

After the top border has been killed, it’s time to prepare to kill the bottom border. First it
should be disabled, so it’s not jumped to while I set it up, then the number of counts, in this
case 228. If I’d only been interested in killing the bottom border, and not the top, this value
would’ve been 199. Lastly, Timer B is started by putting the value 8 in $fffffa1b, meaning that
Timer B goes into event count mode. Now, the value in $fffa21 will decrement by one for
each scan line. The vbl routine is then finished by restoring the registers and status register.

On to Timer B, first off, backup the registers that are used in the routine, to avoid bombs and
other unpleasantries. I arrive in Timer B somewhere on 228:th scan line, and I want to be on
the 229th line when I kill the border. Timer B data changes exactly on the start of every scan
line, so by checking for a change in that register, I’ll know exactly when the change comes
and I’m exactly at the beginning on the 229th scan line and kill off the border; khazam! (note:
if the top border is not killed, the numbers are 199th and 200th respectively)

The check for change in the register might be a bit tricky at first glance; I put the value of
the register in d0, then I compare d0 with the value of the register, if those are equal, I
branch back a step and do the process over. This is repeated until the value in Timer B
changes, and d0 and Timer B will no longer hold the same value. Neat. Arriving on the 229th
scan line now, I just do as before; toggle PAL/NTSC, and finish off that border as well. I
restore the backed up registers, tell the ST the interrupt is over and make a clean exit. All
done; no top or bottom border.

It feels like this tutorial has been a lot of fact blurping, and painfully little understanding.
Well, I guess you have to endure some things. Now that the borders are gone, we have
gained some more pixels to work with obviously. From my gazing-hard-at-the-monitor-trying-
to-see technique, I assume that the top border is 29 scan lines, and that the total visual
spectra goes up to 320×270 pixels, meaning the bottom border is 41 scan lines.

There are lots of good ways to make use of Timer B, for instance, one can change the palette
on every scan line, this means that you aren’t limited to 16 colours a screen, but can with
ease have 16 colours per scan line. In a game, it would be nice to have a status bar in the
lower border, or upper for that matter, to leave the 320×200 "main area" uncluttered with
such stuff. It would also be possible to have that status bar in a different palette, making it
very smooth. Another thing is the possibility to change resolution mid-screen, by doing this,
you can have a medium resolution star filed in the upper part of the screen (star fields
require few colours), and then change resolution to low and have, say a nice mountain
formation on the bottom, which require more colours. Creativity is up to you!

Again, thanks to all people who support and encourage me. I got a mail from Bruno Padinha,
who sent me the entire tutorial formatted very nicely. I’ve received mail from more people
than I could have dreamed of, thank you all! Also, big thanks go out to all good people at
#atariscne on IRC, who help me with various coding stuff.

Of Lighting A Candle (And Casting A Shadow)

Of Lighting A Candle (And Casting A Shadow)

 2002-06-23 (last edition of the initial revision)

I fear I will never find anyone

I know my greatest pain is yet to come

Will we find each other in the dark

My long lost love

~ Nightwish Beauty of the Beast

Hello again! I just got four Jaguar games from Aldebaran, he’s away over the midsummer
feast so he was kind enough to leave me four Jaguar titles, since I own a Jaguar but have no
games, heh …​ I thought I’d wait until tomorrow before knocking myself out though, and do
some good right now (or perhaps it’s because the TV is blocked). Ahh, I’ve gotten hold of the
new Nightwish CD; Century Child, if you don’t own it already, make sure to do so! They play
Finnish metal combined with real cute songs and the main singer is schooled in classic opera,
so they have a real cool sound and are probably my favourite musical artists.

We’re up to tutorial number 10; which makes me very glad and proud over the work
achieved. This had not been possible without the support of readers and other VIP’s. To
celebrate the tenth "anniversary", I’m going to give you something special; a putpixel routine.
Actually, that statement was almost meant as a kind of ironic, funny statement. I mean, not
until tutorial number 10 do we learn how to code a putpixel routine, in the PC’s MCGA mode
for example, this is something you hardly have to learn, it’s implied. However, as anyone who
knows this much about programming the ST will know, coding putpixel for the ST is a pain in
the butt.

The putpixel will hopefully be a prequel to a tutorial on sprites. Sprites, by the way, are
anything that moves on the screen, such as a little spaceship, a funny rabbit or just a
bouncing ball. A putpixel routine is a routine designed to put a single pixel on the screen, so
on the ST, it lights a single dot in one of 16 colours. To achieve this, four bits have to be
changed in four different places in memory, and nothing else must be changed in the screen
memory, else too much will be changed.

Let’s first see how we will know which pixel to change. We want to be able to provide
information in coordinates, like pixel 160,100, which is about the middle of the screen. The
ST would treat any such coordinates with a big question mark, so we have to find a way to
translate the coordinates. All pixels come after one another in the screen memory, starting
with the top left one, and ending with the bottom right.

This means that X value is of course worth 1 position, since pixel 2,0 is the third pixel on
screen. Each Y value is worth as much as the number of X coordinates on one scan line, in
the case of ST low resolution; 320. So if we have the coordinate 160,100, that would be the
160 + 100 × 320 = 32161th pixel on screen (one extra is added to the value since we start
counting from 0). The total number of pixels on screen is 320 × 200 = 64000 pixels, which is
about twice as much as 32160, so the formula seems to work. However, this won’t work on a
ST, because we can’t simply count pixels that easily.

The information for a single pixel is contained in four bits in four consecutive words, one bit
in each word. So, instead what we need to know is at what word the first bit is, and which bit
exactly it is we want to deal with. There are 16 bits in each word, by dividing our X value with
16, we will get the number of word clusters to count in the result, and the exact bit in the
remainder.

Here’s why: suppose we want the 19th pixel, this would mean jumping over the first word
cluster, which contains information for 16 pixels, and then manipulate the third most
significant bit in the next word cluster. 19 / 16 = 1.1875, which means we get the result 1
and the remainder 16 × 0.1875 = 3, it works! So, given the ST’s screen memory
configuration, how exactly will we treat coordinate 160,100?

We assume the screen memory points to the start of the screen memory. First, the Y
coordinate, which is the simplest; each scan line is 160 bytes, so multiply the Y coordinate
with 160 and add it to the screen address. Then divide the X value with 16, multiply the
result with 8 and add to the screen memory. Why 8? Because each word cluster that we are
to jump over is 8 bytes; two bytes to a word and four consecutive words. Now, the screen
memory points to the first word of the four consecutive words we need to alter, in each word
we want to alter one bit. The exact bit is obtained from the remainder of the X division. There
may be other intricate methods, but this one is robust, straightforward and good for learning.
Supposing a0 points to the beginning of screen memory, d0 holds the X-coordinate and d1
holds the Y-coordinate, this is how it’s done.

 mulu.w #160, d1 ; 160 bytes to a scan line
 add.l d1, a0 ; add y value to screen memory
 divu.w #16, d0 ; number of clusters in low, bit in high
 clr.l d1 ; clear d1
 move.w d0, d1 ; move cluster part to d1
 mulu.w #8, d1 ; 8 bytes to a cluster
 add.l d1, a0 ; add the cluster part to screen memory
 clr.w d0 ; clear out the cluster value
 swap d0 ; put the bit to alter in low part of d0

There is some magic worked here with high and low parts of the data registers. With high
and low part, we mean the two first, and two last bytes of the register, thus the high part is
the first 16 bits, and the low part the last 16 bits (reading from left to right). By performing
instructions with word size, you only affect the lower part of a register, and leave the higher
part unchanged.

The divu instruction, leaves the result in the low part and the remainder in the high part of
the register. After the divu, the move.w will only move out the lower part, the cluster part, of
d0. Following is a multiplication on the cluster value, and an addition to screen memory.
Finally, clear out the cluster part of d0, and a swap instruction. The swap instructions flips the
high and low part of a register, so now d0 neatly holds only the value for the bit to be
changed, and a0 points to the correct place.

So, now that we know where to change, how do we know what to change? We will have a
value between 0 and 15, that is supposed to be put in those four bits in the screen memory
(the colour of the pixel). We can’t just move in the data, we could devise some plan with bset
and bclr instructions, but that may be clumsy and will probably involve branches for testing,
which is slow. Instead, we will use our knowledge of masks and Boolean algebra to solve the
problem.

By putting the colour data in the high part of a register, we can then rotate the least
significant bit of the colour into the lower part, and then do a shift on only the lower part of
the register, to put the colour bit in the correct place; mask prepared! Suppose we have the
colour value in d2, and the number of bits to change in d0, obtained from the example
above, this is how it works.

 swap d2 ; put colour value in high part
 lsr.l #1, d2 ; put one bit of colour in shiftable position
 lsr.w d0, d2 ; shift by number in d0

Memory will perhaps look something like this, d1 = 5.

	
	High part
	Low part

	d2

	%0000000000000000

	%0000000000001011

 swap d2

	
	High part
	Low part

	d2

	%0000000000001011

	%0000000000000000

 lsr.l #1, d2

	
	High part
	Low part

	d2

	%0000000000000101

	%1000000000000000

 lsr.w d0, d2

	
	High part
	Low part

	d2

	%0000000000000101

	%0000010000000000

Ah, now the lower part of d2 will hold a terrific mask, we have one bit set, the one bit that
we want to alter in screen memory, a simple ORing of the mask will make sure that the bit is
set in screen memory, then we just add two to the screen pointer, and repeat the process.
Wrong! Problem is, depending on our value, we want to either clear or set the bit, as you can
see, on the third run through, the bit should be cleared, not set (the third bit counting from
the left in the colour value is 0). If we just OR in the mask, and the bit we want to clear in
the screen memory, is set to begin with, we will end up with a set bit where we want a
cleared bit. Buh, that sounded awful, example! This is how it will look the third run through

	
	High part
	Low part

	d2

	%0000000000000001

	%0000000000000000

note how the fifth most significant bit in the lower part is not set.

	Screen memory

	%1111111111111111

By ORing d2 with the screen memory, we won’t be clearing out the fifth most significant bit in
the screen memory, although we need it to be cleared in order for the pixel to have the
correct value. So, before ORing in our mask, we need to make sure the bit is cleared. This is
done by ANDing in a mask with all bits set except the one bit we want to change. Mask
preparation looks like this.

 move.w #%0111111111111111, d1
 ror.w d0, d1

	d1

	%11111011111111111

The ror instruction, for ROtateRight, will rotate the register, making sure that whatever goes
out the right (or left) will then come in to the left. Thus, if the least significant bit is 0, a 0 will
me moved in the most significant bit, if it’s a 1, a 1 will be moved in. The difference between
a logical shift and a rotate, is that a logical shift will move in 0’s, while rotate will move in
whatever went out. Examine Motorola 68000 Instruction Execution Times if
you wish to further your knowledge on this, there are also arithmetic shifts, but I don’t use them
here. Now, by first ANDing in the clear mask, we can then safely or in our pixel mask, like so.

 swap d2 ; colour in the high part of d2
 move.w #%0111111111111111, d1
 ror.w d0, d1 ; clear mask prepared

 lsr.l #1, ; d2 shift in the next colour bit
 ror.w d0, d2 ; shift colour bit into position
 and.w d1, (a0) ; prepare with mask (bclr)
 or.w d2, (a0)+ ; or in the colour
 clr.w d2 ; clear the old used bit

Then just repeat that over and over, or rather, three times more. The only thing not covered
before is the last line, clearing out the old used bit, without this, remnants might be left on
the next time around. This is one way of putting a pixel to screen. Bit planes make a putpixel
routine so incredibly slow and clumsy. This though, is just a generic putpixel routine, a pixel
routine designed for a specific purpose might be much faster, involving only one bit plane
perhaps. You don’t have to mess around with all four bit planes every time, say you only
want to use four colours for your stuff, then just leave two bit planes alone, since they aren’t
needed, this will speed up things. This is the entire putpixel routine.

 putpixel:
 ; a0 screen address
 ; d0 X coordinate
 ; d1Y coordinate
 ; d2 colour

 mulu.w #160, d1 ; 160 bytes to a scan line
 add.l d1, a0 ; add y value to screen memory
 divu.w #16, d0 ; number of clusters in low, bit in high
 clr.l d1 ; clear d1
 move.w d0, d1 ; move cluster part to d1
 mulu.w #8, d1 ; 8 bytes to a cluster
 add.l d1, a0 ; add the cluster part to screen memory
 clr.w d0 ; clear out the cluster value
 swap d0 ; put the bit to alter in low part of d0

 ; now a0 points to the first word of the bitplane to use
 ; d0.w holds the bit number to be manipulated in the word

 swap d2 ; colour in the high part of d2
 move.w #%0111111111111111, d1
 ror.w d0, d1 ; clear mask prepared

 rept 4 ; do this 4 times
 lsr.l #1, d2 ; shift in the next colour bit
 ror.w d0, d2 ; shift colour bit into position
 and.w d1, (a0) ; prepare with mask (bclr)
 or.w d2, (a0)+ ; or in the colour
 clr.w d2 ; clear the old used bit
 endr

 rte return form putpixel

 ; end putpixel

That was that. A nice putpixel routine to use for our convenience, slow as hell because of two
multiplications and one division. Because this is a tutorial, and I want to push against
practical use, I’ve also written a stupid little program that puts 50 pixels a second on the
screen, like a screen saver. However, that program also includes some nice tricks so read on!

The ST has a number of system variables, they are found at very low addresses, starting at
$400 and ending at $516. Like the name suggests, these variables contain lots of special
information on the system, and they can provide quite the shortcut to finding out some
information. For example, $44e, called _v_bas_ad, is a long word containing a pointer to the
screen memory (the logical screen memory). If you just want a quick and dirty program, like
this one, and want to find out the screen address without traps, or hooking it up yourself,
simply read the value here.

 move.l $44e, a0 ; a0 points to screen memory

There are some other useful system variables, which will be presented when the need arises.
If we want to have a screen saver like program, we want to be able to output random pixels,
right? So we need a way to generate a random number. Random numbers are usually
obtained from reading the system clock, and then applying some algorithm to the obtained
value. We don’t want to mess with that, especially not when there is a very nice trap that will
do the job nicely for us. Trap number 17 in XBIOS will generate a 24-bit random number and
put it in d0.

 move.w #17, -(a7) ; trap number 17, random
 trap #14 ; call XBIOS
 addq.l #2, a7 ; clean up stack
 ; random number in d0

Well, a random number of 24-bits is a number between 0 and 16777216. We want values in
the range of 0 to a maximum of 319; 0-15 for the colour, 0-319 for the X coordinate and 0-
199 for the Y coordinate. So how can we get the random number "down to our level", so to
speak? We could put the random call in a loop, and in the end of each loop check the random
value, and if it is to big, just repeat the loop. While this would work, it would be so incredibly
slow because the odds of the value falling within parameters are extremely small. However,
by first lessening the value, we gain tremendous time.

As we so well know, the colour value consists of 4 bits. By ANDing the random value with
%1111, we effectively set all bits to 0 except the first four (which may be 0 or 1, depending
on the initial value). Thus, our initial random value of 24-bits has been reduced to a 4-bit
value, making it perfect for our needs. The X and Y coordinates however, are a bit different,
since their representation does not consist of a complete set of bits (numbers that do so are
the ones immediately before the powers of 2, i.e. 1, 3, 7, 15, 31, 63, 127, 255, etc). We can’t
simply mask off the X co-ordinate’s unnecessary bits like we did the colour, rather we have to
keep one bit more than what is needed.

The value 319 uses 9 bits, so we will have to AND the X coordinate with %111111111, but
%111111111 = 511, so after masking off the bits in our random value, we’ll have a number
between 0 and 511. Now, we must use a loop to check the value, and make a new random
number if it should prove to be over 319. The odds for the value of being within parameters
are greatly increased though.

 get_x
 move.w #17, -(a7)
 trap #14
 addq.l #2, a7 ; get random number
 and.l #%111111111, d0 ; make it maximum 511
 cmp #319, d0
 bgt get_x ; loop until d0 < 320

The instruction bgt will branch if the value compared is greater than. This loop then, will loop
until the value in d0 is not greater than 319. The Y coordinate is obtained by doing much the
same thing, but we only need to AND with 8 bits, because the Y coordinate should be < 200,
and 8 bits make up 255. There, all the theory we need, this is the complete source of the
program.

 jsr initialise

 move.l $44e, a0 ; a0 poins to screen memory
 move.w #0, $ff8240 ; black background
 move.l #7999, d0
clear
 clr.l (a0)
 dbf d0, clear ; clears screen to colour 0

main
 move.w #37, -(a7)
 trap #14
 addq.l #2, a7 ; wait retrace

get_x
 move.w #17, -(a7)
 trap #14
 addq.l #2, a7 ; get random number
 and.l #%111111111, d0 ; make it maximum 511
 cmp #319, d0
 bgt get_x ; loop until d0 < 320
 move.l d0, d7 ; store x coordinate

get_y
 move.w #17, -(a7)
 trap #14
 addq.l #2, a7 ; get random number
 and.l #%11111111, d0 ; make it maximum 255
 cmp #199, d0 ; loop until d0 < 200
 bgt get_y
 move.l d0, d6 ; store y coordinate

 move.w #17, -(a7)
 trap #14
 addq.l #2, a7 ; get random number
 and.l #%1111, d0 ; make it maximum 15
 move.b d0, d2 ; put colour number in d2

 move.l d7, d0 ; put x coordinate in d0
 move.l d6, d1 ; put y coordinate in d1

 move.l $44e, a0 ; a0 points to screen memory
 jsr putpixel ; put pixel on screen

 cmp.b #$39, $fffc02 ; space pressed?
 bne main ; if not, repeat main

 jsr restore

 clr.l -(a7) ; clean
 trap #1 ; exit

putpixel:
; putpixel routine
; a0 screen adress
; d0 x-coordinate
; d1 y-coordinate
; d2 colour
 mulu.w #160, d1 ; 160 bytes to a scan line
 add.l d1, a0 ; add y value to screen memory
 divu.w #16, d0 ; number of clusters in low, bit in high
 clr.l d1 ; clear d1
 move.w d0, d1 ; move cluster part to d1
 mulu.w #8, d1 ; 8 bytes to a cluster
 add.l d1, a0 ; add cluster part to screen memory
 clr.w d0 ; clear out the cluster value
 swap d0 ; bit to alter in low part of d0

; now a0 points to the first word of the bitplane to use
; d0.w holds the bit number to be manipulated in the word

 swap d2 ; colour in the high part of d2
 move.w #%0111111111111111, d1
 ror.w d0, d1 ; clear mask prepared

 rept 4 ; do this 4 times
 lsr.l #1, d2 ; shift in the next colour bit
 ror.w d0, d2 ; shift colour bit into position
 and.w d1, (a0) ; prepare with mask (bclr)
 or.w d2, (a0)+ ; or in the colour
 clr.w d2 ; clear the old used bit
 endr

 rts
; end putpixel

 include initlib.s

[image: tutorial 10 screenshot]

Figure 11. Pixels

Yes, first a normal initialisation, then the neat trick of putting the screen address in a0,
followed up by putting the background black and clearing the screen. Then, a main routine,
the question here is why I didn’t I use the $70 as described in tutorial 9. The reason is a bit
farfetched, but valid. Because of the random loops, there is a theoretical possibility of the
main routine taking longer than 1/50th of a second, it’s virtually impossible, but it could
happen. If this were to happen, the $70 vector would be called while the previous one were
still being executed, resulting in a crash. With the method I use here, however, there is no
danger of a crash.

Obtaining the X coordinate, as described above, only new thing is storing the coordinate in
d7. This is because the coming random trap for the Y coordinate will destroy everything in
register d0, and then some, register d7 however, is safe. Same goes for the Y coordinate.
Finally, the colour value is obtained, and moved over to d2, then the X and Y coordinates are
moved into their respective registers. These registers could be anything, or a variable or
whatever storage possibility, but the putpixel routine is designed to have the X coordinate in
d0 and the Y coordinate in d1, so this is how it’s supposed to be. After the screen address
has been put in a0, all is set for the putpixel call.

The putpixel routine is exactly as described above, so nothing new there. Signing off with a
check for a pressed spacebar, and that concludes the program. Note how I put the putpixel
routine in its own subroutine, instead of including it in the main program, which could also
have been done. This results in tidier code, the downside being that it takes more time to
execute, but time is no issue here.

Speaking of time, I actually think that I’ll fill up some space here with a bit on optimisation,
something that will have to come one day or another anyway. There are two multiplications
and one division in the putpixel routine, horrible. These can be replaced with shift
instructions, but it’s a bit tricky. Each shift either doubles or halves the value in the register.
So how do we do a multiplication of 160 and a division by 16, where we also keep the
remainder?

First, the Y part; here, we want to have a result equalling d1 × 160. 160 is not a value you
may shift by, since all shift will produce multiplication results of 2, 4, 8, 16, 32, 64, 128, 256
and so on. However, 128 + 32 = 160, the value we want to multiply with, and when things
come to multiplication, we are allowed to split the multiplication in two and add the result;
d1 × 160 = d1 × 32 + d2 × 128. All we have to do is copy our Y coordinate into another register,
shift one register with 5 (multiplication of 32), shift the other with 7 (multiplication of 128)
and add the results together.

 move.w d1, d3 ; copy Y coordinate
 lsl.w #7, d1 ; mulu #128,d1
 lsl.w #5, d3 ; mulu #32,d3
 add.w d3, d1 ; add results together
 add.l d1, a0 ; add result to screen address

Note the word size used in all operations. There may still be garbage in the upper part of d3,
but this is never touched in any of the operations. Since the maximum value we will handle is
199 × 160 = 31840 is less than the maximum for a word size, which is 216 = 65536, it’s ok to
only use word size instructions, it also saves time. Our mulu instruction would take a
maximum of 70 clock cycles, but in this case I think it’s 42. The technique of shifting takes

12 + 6 + 2 × 7 + 6 + 2 × 5 + 8 = 58

Heh, seems we wasted time rather than saving. Let that be an important lesson, sometimes
the job’s just not worth doing. ☺

So now the X part, first, put the thing in the upper part of d0 with a swap. Now, with a right
shift of 4, we will effectively divide the number by 16, which is what we want to achieve, the
result will be in the upper part, and the remainder will be in the highest bits in the lower part.
Now, what we need to do is simply to put the remainder down in the lowest bits in
d0, so we right shift by 12. The reason for right shifting by 12 is that the remainder takes up
a maximum of 4 bits (remainder maximum is 15, %1111), and 12 + 4 = 16 which is the
number of bits in the lower part of a data register. Unfortunately though, you can’t shift by
12 when shifting with a number, so we’ll just have to divide the shift in one 8 and one 4 part,
8 being the highest number you may shift by.

Swap down the result in the lower part, and shift it left by 3 in order to multiply with 8. We
make sure to keep the operation word size in order not to affect the remainder in the upper
part. Then, add the result to the address register, but only use a move with word size, in
order to only add the multiplied result, and leave the remainder well alone. Lastly, a clear out
of the result part and a swap to put everything right for the next part of the putpixel.

 swap d0 ; put in upper part
 lsr.l #4, d0 ; divide by 16
 lsr.w #8, d0 ; shift down remainder ...
 lsr.w #4, d0 ; ... by 12 bits total
 swap d0 ; result in lower part
 lsl.w #3, d0 ; multiply with 8
 add.w d0, a0 ; add result to screen address
 clr.w d0 ; clear out result
 swap d0 ; put remainder in lower part

That was that, now let’s see if this optimisation did us some good. Unoptimized takes about

140 + 6 + 4 + 40 + 12 + 4 + 4 = 210

The division is an approximation. Also, I don’t think we really need to move some data to d1
to manipulate it, so the unoptimized could do some optimization too, but that’s not too
important. Now let’s see what the shift-optimized part will take

4 + 8 + 4 × 2 + 6 + 8 × 2 + 4 + 6 + 3 × 2 + 8 + 4 + 4 = 88

Even though I’m a bit unsure of some values here, it’s obviously quite a save in any case.
That was a little taste on how to optimize easy, just replace multiplications and divisions with
shifts, sometimes quite a saving, but not always.

Of Making The Mountain Move To Mohammed

Of Making The Mountain Move To Mohammed

 2002-07-12 (last edition of the initial revision)

Is it possible that we two, you and I, have grown so old and
inflexible that we have outlived our usefulness? Would that
constitute …​ a joke?

~ Star Trek VI the Undiscovered Country

Well well, finally, as promised, we will delve into the technique of sprites; the essence of a
platform or shoot-em-up game, and lots of other stuff. In fact, anything that needs
something moving that is not 3D or real time rendered (that is, it’s being drawn while the
program runs, and not stored previously as a picture). It was really challenging and great fun
to code this one, and it’s probably the most satisfying coding experience ever, I hope I can
convey the knowledge it brought me.

In the last tutorial, we learned something on pixels, in order to be able to address a single
pixel anywhere, the data must be shifted into a correct position. Why is this? Because, each
instruction except the bit instructions, deal with at least byte size. What it means is that if we
use instructions with byte size, all pixels "snap" at 8 pixels, because that’s the minimum
addressable size. However, by shifting the data before using it in graphic instructions, we can
in a way address any pixel we want to.

[image: tutorial 11 autumn]

Figure 12. autumn.pi1

I actually suggest you load up the pre-assembled program, and both the picture files that
comes with the tutorials, the pictures being autumn.pi1 and sprite.pi1. A little note on the
pictures, they are in STe palette, meaning that they will look a bit ugly on a ST, but STeem
should handle this nicely. Yes, the character seen is the same one as in tutorial 9:
Kenshin. He’s the main character in a Japanimation, a former assassin for the government who now tries to
atone by living a quiet life and helping people. This series is awesome and has given me
much inspiration, the first Kenshin OVA series is one of the most beautiful pieces of art I’ve
ever seen.

[image: tutorial 11 sprite]

Figure 13. sprite.pi1

So, after you’ve been impressed by the Tai Ji symbol (a.k.a. Yin and Yang symbol, Yin and Yo
in Japanese) bouncing around the screen, you are eager to learn for yourself, right? As you
can see, the background is provided in the autumn.pi1, and the bouncing ball, which is the
sprite, is in sprite.pi1. Actually, only 14 colours are used for the background, the last two
being reserved for the sprite, this isn’t necessary and the sprite may well share colours with
the background. The sprite seems to appear twice, in the sprite.pi1, there are two balls,
one of them is the sprite mask, if confusion occurs, just read on.

Painting the background is easy, just smack in the pixel data and set the palette, bouncing
will be dealt with later, what we need to focus on now is getting the sprite nicely on the
screen, and being able to put it anywhere on the screen, preferably expressing the location in
X and Y coordinates for human compatibility. How exactly to put the sprite data on screen,
the most obvious choice is a move instruction. This won’t do at all though, check this out.

	Screen memory

	%00000000

	%00001110

	first word

	%00000000

	%00000000

	second word

	%00000000

	%00001011

	third word

	%00000000

	%01010101

	fourth word

	Pixel colours

	$00000000

	$0808595C

	

	Sprite data

	%00000000

	%00000001

	first word

	%00000000

	%00100000

	second word

	%00000000

	%00000000

	third word

	%00000000

	%00001010

	fourth word

	Pixel colours

	$00000000

	$00208081

	

Now, if we move the sprite data onto the graphics memory, we get

	Screen memory

	%00000000

	%00000001

	first word

	%00000000

	%00100000

	second word

	%00000000

	%00000000

	third word

	%00000000

	%00001010

	fourth word

	Pixel colours

	$00000000

	$00208081

	

Move instructions destroy all data and replace it with new, in other words, the background is
completely lost and the sprite has taken over completely. Doing it like this will also create an
ugly squared looking sprite, since the sprite background will not be transparent (actually
rectangular, but more on this below), as you can see on Result of simply `move’ing the sprite data". This will not do.

[image: tutorial 11 block]

Figure 14. Result of simply `move’ing the sprite data"

OR instructions, on the other hand, will not overwrite the original data, we try an OR
instruction with the above configuration.

	Screen memory

	%00000000

	%00001111

	first word

	%00000000

	%00100000

	second word

	%00000000

	%00001011

	third word

	%00000000

	%01011111

	fourth word

	Pixel colours

	$00000000

	$0828D9DD

	

Dang! By ORing in the sprite, we mixed the sprite with the background, this is also bad since
the sprite will not look as it should, although it will create quite a nice effect and is good if
you simply want a "colour distortion" effect, but we don’t want that now (check Using an OR instead to
see the effect). An EOR would only flip the colours around in strange ways (An EOR is also no good…​), and an
AND instruction clears data ("…​as it isn’t an AND either").

[image: tutorial 11 or]

Figure 15. Using an OR instead

[image: tutorial 11 eor]

Figure 16. An EOR is also no good…​

[image: tutorial 11 and]

Figure 17. "…​as it isn’t an AND either"

But wait, if we clear out the sprite data, with an AND, leaving the background intact, and
then OR in the sprite, it would all work. The sprite mask has the same look as the sprite, but
is only two colours. Colour 15 where the background is, making sure all bits there are set,
and colour 0 where the real sprite form is, making sure all bits are cleared. Have a look at
sprite.pi1 and you will see clearly (well, ok, in the picture, the mask
is colour 15 and the background is colour 0, but it will get inverted later, read on…​).

	Sprite mask

	%11111111

	%11010100

	first word

	%11111111

	%11010100

	second word

	%11111111

	%11010100

	third word

	%11111111

	%11010100

	fourth word

	Pixel colours

	$FFFFFFFF

	$FF0F0F00

	

All pixels that were colour 0 (background) in the sprite, are now colour 15 (F), and all pixels
that had one colour or another in the sprite are now colour 0. By ANDing the sprite mask with
the background, we will make sure to clear out all sprite pixels (since they get ANDed with 0)
and keeping the status of all other bits (since they are ANDed with 1). It is imperative that
you understand this step, if you don’t, reread the Boolean algebra part in tutorial 9
check some external sources and think again, or send me an e-mail ☺. After applying the
mask, the screen memory will look like this:

	Screen memory

	%00000000

	%00000100

	first word

	%00000000

	%00000000

	second word

	%00000000

	%00000000

	third word

	%00000000

	%01010100

	fourth word

	Pixel colours

	$00000000

	$08080900

	

	#bbbbbbbb

	#bbsbsbss

	b=background, s=sprite

[image: tutorial 11 mask]

Figure 18. What the screen looks like, after the mask is applied.

As you can see (also in What the screen looks like, after the mask is applied.), the background has been preserved, while everything
concerning the sprite is wiped out. Now is the time to OR in the sprite data: this instruction
will in no way affect the background (since the background colour in the sprite is 0). This is
what it will look like after the OR operation:

	Screen memory

	%00000000

	%00000101

	first word

	%00000000

	%00100000

	second word

	%00000000

	%00000000

	third word

	%00000000

	%01011110

	fourth word

	Pixel colours

	$00000000

	$08288981

	

	#bbbbbbbb

	#bbsbsbss

	b=background, s = sprite

To summarise: first we take an inverted version of our sprite with only two colours, and AND
that with the background. This clears all pixels that are concerned with the sprite and leaves
the background intact. After the mask is applied, it is safe to OR in the sprite data, since after
the previous clearing of the sprite pixels, there is no risk of mixing the sprite with the
background. The background in the sprite is colour 0, thus the OR instruction will have no
effect on the background, the background part in the mask is colour 15 (all 1’s) and thus the
AND instruction will not affect the background.

OK, now we know how to put the sprite on screen, but we are still faced with the problem of
not being able to put it anywhere. To solve this, the sprite and mask data must be shifted.
Like with the putpixel, in order to put the sprite at say 0,2, we need to shift the sprite data
right two bits. With the putpixel, we shifted "real time", but there is much more data involved
in a sprite, so we’ll be pre-shifting the sprite instead. When using the pre-shifted method, we
assign a storage area that is 16 times larger than the sprite data, and store the sprite in that
area shifted in all possible sixteen combinations we need.

I see a big ? in your face right now. Think about it, in the putpixel routine, we could end up
shifting the pixel 15 bits to the right, at most, so what we do here with the sprite is to store
all those possibilities after one another. When the time comes to put the sprite out, instead of
shifting the original sprite data, all we have to do is access the storage area with the correct
offset. An offset is the value added to the starting address of something. For example, the
middle of the screen is the screen address with an offset of 100 × 160 + 80 = 16080 bytes.

	Sprite data

	$00001111

	
	…​

	Sprite storage area

	$00001111

	…​

	first position, offset 0

	$00000111

	…​

	second position, offset 1

	$00000011

	…​

	third position, offset 2

	$00000001

	…​

	fourth position, offset 3

	(the offset number is completely fictional, it’s not even an even number)

Let’s say we want to put the sprite at 0,2, we know what that means, it means point to the
start of the screen memory, shift the sprite data right by 2, and put it in place. Say a0 points
to the screen memory, and a1 to the sprite storage area, then we just need to add offset 2 to
a1, and a1 will point to correctly shifted sprite data. Pre-shifting is way faster than loading up
the sprite data in a1, and then shifting it, especially since the sprite data consists of several
words that all need to be shifted. The downside of course is loss of memory.

Now, there is a problem here, if we have a 32×32 pixel sprite, like in the sample program, the
data for the sprite is 16×32 bytes, arranged like this:

	Sprite data (W = word)

	First 16 pixels

	Last 16 pixels

	

	WWWW

	WWWW

	first line

	WWWW

	WWWW

	second line

	WWWW

	WWWW

	third line

	…​ and so on for a total of 32 lines

When we begin to shift, we want the last bit that go out the first word, to be shifted in as the
first bit in the fifth word. This is comparable to the tutorials on scrolling. The last bit that goes
out the fifth word, should not go into the first bit of the ninth word, because then a pixel
from the first line would go into the second line, but there is no room to shift it out right on
the first line. So, we have to add a buffer to every line so that no data will be lost in the shift.
In the last shift, the first four words will be all but empty, and the buffer will be all but full. So
the sprite storage area will have to look like this.

	Sprite storage area (B=buffer, word size)

	First 16 pixels

	Middle 16 pixels

	Last 16 pixels

	

	WWWW

	WWWW

	BBBB

	first line

	WWWW

	WWWW

	BBBB

	second line

	WWWW

	WWWW

	BBBB

	third line

	…​ and so on for a total of 32 lines and 16 such blocks to cover all possible shifts

FIXME

tut11blk.prg below

Even though the sprite storage area covers a total of 48 pixels, 16 of these will be 0, thus not
affecting the background. See the sprite as a 48 pixel wide block, with only 32 pixels
coloured. Within this 48 pixel block, the 32 colour pixels will be shifted more and more to the
right as X coordinates increase, then when it becomes critical, the block will move 16 pixels to
the right in one sweep, and the 32 pixel colour area will be reset, starting the procedure all
over again. Run the tut11blk.prg, to see this clear.

Alright, theory part on pre-shifting done, now we need it in direct coding practice as well.
First off, we’ll need a good instruction with which to shift. Sure, lsr seems a good choice,
but we need to be able to preserve the bit that gets shifted out, and lsr doesn’t preserve
anything. The instruction roxr, for ROtate eXtended Right, is good in this case. The
extended bit is rotated in from the left, and the bit rotated out the right is saved in the carry
and extended flag. So, by `roxr`ing with one each time, we will save what we shift out, and
shift it in the next time around (btw, when speaking about the user bits in the status register,
flags and bits are used synonymous). Looki looki:

	
	d0
	X (extended bit)

	
	%00001101

	0

	roxr #1,d0

	%00000110

	1

	roxr #1,d0

	%10000011

	0

	roxr #1,d0

	%01000001

	1

What we do is to first copy the sprite data to the sprite storage area, then we take the data
from the storage area, rotate extended right with one, and save that data into the next
position of the storage area. What we have to think about when coding this is that the data
from the first word, goes into the fifth word and so on. In code, it looks like this

 move.l #spr_dat, a0 ; original sprite data
 add.l #34, a0 ; skip palette
 move.l #sprite, a1 ; storage of pre-shifted sprite

 move.l #32-1, d0 ; 32 scan lines per sprite
first_sprite
 move.l (a0)+, (a1)+ ; move from original to pre-shifted
 move.l (a0)+, (a1)+
 move.l (a0)+, (a1)+
 move.l (a0)+, (a1)+ ; 32 pixels moved
 add.l #8, a1 ; jump over end words
 add.l #144, a0 ; jump to next scan line
 dbf d0, first_sprite

First, point to the sprite data, jump over the palette and load up the sprite storage area,
which is a ds.l 3072: 16 bytes per line, plus 8 for the buffer, totalling 24 bytes per scan
line. The sprite is 32 lines and there should be 16 such blocks. This adds up to 24 × 32 × 16 =
12288 bytes, which is 3072 long words. In the loop, just copy data from the sprite picture to
the storage area, the buffer word area is skipped since it contains nothing at this time. Now
comes the challenging part, writing the generic pre-shift.

 move.l #sprite, a0 ; point to beginning of storage area
 move.l #sprite, a1 ; point to beginning of storage area
 add.l #768, a1 ; point to next sprite position

 move.l #15-1, d1 ; 15 sprite positions left
positions
 move.l #32-1, d2 ; 32 scan lines per sprite
line
 move.l #4-1, d3 ; 4 bit planes
plane
 move.w (a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 move.w d0, (a1) ; put it in place
 move.w 8(a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 move.w d0, 8(a1) ; put it in place

 move.w 16(a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 move.w d0, 16(a1) ; put it in place

 add.l #2, a0 ; next bit plane, also clears X flag
 add.l #2, a1 ; next bit plane

 dbf d3, plane

 add.l #16, a1 ; next scan line
 add.l #16, a0 ; next scan line

 dbf d2, line

 dbf d1, positions

First off, load up the storage area in a0 and a1, and make a1 point to the next storage area.
This one is empty and should contain the sprite data shifted one bit to the right. Since we
have already filled the first position in the storage area, 15 positions are left. 32 lines to each
sprite and 4 bit planes to each line. Since all these are treated the same way, we only need
one big loop so to speak.

Now comes the fun part, put the first word in d0, this word comes from the previous storage
position. Rotate it, and put it in at the next storage position. Now the extended flag holds the
bit that was shifted out the right, and this one needs to be shifted in on the left in the first
word in the next word cluster. So, a byte offset of 8 (4 words) is added when fetching and
storing the next word. The buffer must also come into play, so the last word will get a byte
offset of 16. Now, we have pre-shifted three words.

By adding 2 to both a1 and a0 we will be at the next bit plane. It will also clear the extended
flag, which is good because otherwise a bit from the last word might come over to the first
word on the next bit plane, which is undesirable. Repeat for all four bit planes. We have now
moved a line of the sprite. After the four bit planes have been rotated, a0 and a1 will point to
the first word in the second 16 pixel cluster, or 8 bytes from the beginning of the data. By
adding 16, we will point to the next scan line (16+8 = 24). Repeat for 15 positions. Pretty
compact explanation, yes? A graphical representation follows.

	Storage area with data, beginning at $0

	16

	16

	16 pixels

	

	W W W W

	W W W W

	W W W W

	

	…​ for 32 lines

	0 2 4 6

	8 10 12 14

	16 18 20 22

	byte offset

	Storage area without data, beginning at $768

	16

	16

	16 pixels

	

	0 0 0 0

	0 0 0 0

	0 0 0 0

	(each 0 is word size)

	…​ for 32 lines

	0 2 4 6

	8 10 12 14

	16 18 20 22

	byte offset

 ; a0 = $0
 ; a1 = $768

 move.w (a0), d0
 roxr d0 ; C = leftmost bit from W offset 0
 move.w d0, (a1) ; put rotation in 0 at offset 0

 move.w 8(a0), d0 ; as you see, first word of second cluster
 roxr d0 ; bit preserved and shifted from offset 0
 move.w d0, 8(a1) ; put it at offset 8

 move.w 16(a0), d0 ; first word last cluster
 roxr d0 ; rotate, carry bit may now be set
 move.w d0, 16(a1) ; at offset 16

 add.l #2, a0 ; next bit plane, watch offset
 add.l #2, a1 ; also clears X flag

Finally, a0 and a1 will both be at offset 8, the first word of the first bit plane, by adding 16 to
this, the offset will be 24, the value for a whole line, effectively putting us at the beginning of
the next line. That concludes the pre-shift of the sprite.

The mask data has to be pre-shifted a bit differently. Where the sprite colour is, we need the
mask to be 0, and where the background is, the mask must be 1, as explained above. A look
at the sprite picture will show that the sprite colour area is colour 15, all 1’s, and the
background is colour 0, all 0’s. For the mask to be correctly pre-shifted, we need to invert it,
making the background all 1’s and the sprite colour area all 0’s. When shifting, we must also
always be shifting in 1’s, not 0’s as the case was with the sprite data.

The instruction not, for NOT ☺, will take any value and invert it, this means changing all 1’s
to 0’s and all 0’s to 1’s. In order to have all bits except those concerning the sprite colour
area set, we must make sure to put 1’s in the buffer area. Also, at the beginning of each
plane loop, we must also make sure that the highest bit of d0 is set, so that 1’s are shifted in.
Other than that, the sprite and mask pre-shift share ideas. The mask area is as big as the
sprite area. Even though this isn’t necessary since all bit planes in the sprite look alike, we
could have reduced the size by ¾, but for ease of understanding, this was not done.

 move.l #spr_dat, a0
 add.l #34+160*32, a0 ; skip palette and sprite

 move.l #mask, a1 ; load up mask part

 move.l #32-1, d0 ; 32 scan lines per sprite
first_mask
 move.l (a0)+, (a1) ; move from original to pre-shifted
 not.l (a1)+ ; invert the mask data
 move.l (a0)+, (a1)
 not.l (a1)+ ; invert the mask data
 move.l (a0)+, (a1)
 not.l (a1)+ ; invert the mask data
 move.l (a0)+, (a1)
 not.l (a1)+ ; invert the mask data
 move.l #$ffffffff, (a1)+ ; fill last two words...
 move.l #$ffffffff, (a1)+ ; ... with all 1's

 add.l #144, a0 ; jump to next scan line
 dbf d0, first_mask
; the picture mask has been copied to first position in pre-shift

 move.l #mask, a0 ; point to beginning of storage area
 move.l #mask, a1 ; point to beginning of storage area
 add.l #768, a1 ; point to next mask position

 move.l #15-1, d1 ; 15 sprite positions left
positions_mask
 move.l #32-1, d2 ; 32 scan lines per sprite
line_mask
 move.l #4-1, d3 ; 4 bit planes
plane_mask
 move.w (a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 or.w #%1000000000000000, d0 ; make sure most significant bit set
 move.w d0, (a1) ; put it in place

 move.w 8(a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 move.w d0, 8(a1) ; put it in place

 move.w 16(a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 move.w d0, 16(a1) ; put it in place

 add.l #2, a1 ; next bit plane
 add.l #2, a0 ; next plane, clears X flag (bad)

 dbf d3, plane_mask

 add.l #16, a1 ; next scan line
 add.l #16, a0 ; next scan line

 dbf d2, line_mask

 dbf d1, positions_mask

Unlike the sprite pre-shift where we could set up the storage area with direct memory moves
from the sprite picture to the storage area, here we move data, and then perform the NOT
instruction to invert the data. Also, instead of just skipping the buffer area like in the sprite,
here we fill it with 1’s. The bit plane loop is almost identical, with the one exception that the
first shift must be guaranteed to shift in a 1, not a 0. A simple OR instruction will make sure
the most significant bit is set. That was that, all pre-shifting done.

The method which we use to get the coordinates is the exact one found in Chapter 10. So
when we send in our coordinates, we will be provided with a pointer to the screen address,
and the number of shifts to be done in d0. The number in d0 is an offset for the sprite data
and mask data. By putting the address to the sprite data in an address register, multiplying
d0 with 768 and adding that to the address register, we will get a pointer to correctly shifted
sprite data. The reason for the number being 768 is that it is the size of a sprite block.

OK, now comes the problem of actually moving the sprite. We can put a sprite at any
coordinate we want, but we can’t move it yet. A simple bounce routine here, the sprite will
move with a certain X speed and a certain Y speed, and change direction when it hits "walls"
(edges of the screen). What we need is a heading, and a speed. For simplicity, we express
the heading as either 1 or 0 for both X and Y respectively. 1 is towards bottom right and 0 is
towards upper left. X heading is either right or left, and Y heading either up or down. The X
and Y speed is how many pixels to move the sprite in desired direction each VBL. So with an
X heading of 1, and an X speed of 2, the sprite would move 2 pixels right each VBL.

What the move routine needs to do is to add X and Y coordinates in accordance with heading
and speed, as well as checking for wall hits. When a wall hit occurs, the sprite must change
direction. A change in direction simply means flipping between 1 or 0 in heading. This might
be a good time to tell about the equ, for EQUals method. Any label can have an equ applied
to it, meaning that whenever one uses the label, it is replaced by the equ. Easy huh?

 number equ 2
 move.l #number, d0 ; same as move.l #2,d0

One can say that `equ’s, are constants. It’s good practice to have as many `equ’s as possible,
because if you realize you have to change a constant, you only need to change it in one place
instead of every place the constant appears. X speed and Y speed is a good example (unless
you want variable speed), X coordinate is a terrible thing, since it needs to change all the
time. Actually, I think it’s best to express the move routine in pseudo code first.

 If (x_coord > 319 - 32 - x_speed + 1) Then
 x_heading = 0
If (x_coord < 0) Then
 x_heading = 1
If (y_coord > 199 - 32 - y_speed + 1) Then
 y_heading = 0
If (y_coord < 0) Then
 y_heading = 1

First we check to see if the heading needs change, as long as the sprite is in any way outside
the screen coordinates, we need to change the heading. Since we check the heading before
we move the sprite, and move the sprite before drawing it, the sprite will never be drawn off
screen. The only trouble here is where all numbers come from. Think of it first without
x_speed added, every VBL the sprite just moves one pixel. Then the formula is x_coord >
319 - 32. This is easy to grasp, the X coordinate must not be more than the screen can hold,
which is 319, minus the width of the sprite itself of course, which is 32.

The so called "hot spot" of the sprite is the upper left corner. This is the point against which
all sprite coordinates are measured. We say that the sprite is at coordinates 13,13, but this
really means that the sprite hot spot is at 13,13. Exactly what pixels the sprite inhabits is
unknown to us, since the sprite can have any form, but for simplicity, we think of the sprite
as a square, with the coordinates in the upper left corner. Thus, when seeing if the sprite hits
the right wall, we take the coordinates of the upper left corner, the hot spot, and add the
width of the sprite.

The x_speed is also to be taken into account. Imagine the sprite moving with 100 pixels per
VBL, then the sprite will be way outside the screen if it’s anywhere over the right half of the
screen, so the sprite is only ok if it’s on the left half of the screen, obviously, the speed must
be taken into account. Think of the speed as just enlargement to the sprite. The Y check
works exactly the same way, but with a different max coordinate for obvious reasons. It looks
a bit different in assembly though.

 cmp #319-32-x_speed+1, x_coord

 blt x_right_ok ; see if x is < 319-32 for width
 move.w #0, x_heading ; if x >=319, change heading
x_right_ok

 cmp #0, x_coord
 bgt x_left_ok ; see if x is > 0
 move.w #1, x_heading ; if x <=0, change heading
x_left_ok

 cmp #199-32-y_speed+1, y_coord
 blt y_low_ok ; see if y is < 199-32 for lines
 move.w #0, y_heading ; if y >=199, change heading
y_low_ok

 cmp #0, y_coord
 bgt y_high_ok ; see if y is > 0
 move.w #1, y_heading ; if y <=0, change heading
y_high_ok

We check if the X coordinate is lesser than the number, and if it is, it’s ok and a little branch
will skip the changing of the X heading. Whereas the pseudo code’s IF statements took place
if the check was true, our checks affect if the statements are false. This may look messy, but
it’s really quite simple, just take a second look at it. We also need to update the coordinates,
here’s some more pseudo code.

 If (x_heading = 0) Then
 x_coordinate = x_coordinate - x_speed
Else
 x_coordinate = x_coordinate + x_speed

If (y_heading = 0) Then
 y_coordinate = y_coordinate - y_speed
Else
 y_coordinate = y_coordinate + y_speed

No problem there, just change the coordinates according to speed and heading. In assembly
it becomes more troublesome though.

 cmp #0, x_heading ; check x heading
 bne x_move_right ; if 1, move right, otherwise left
 sub.w #x_speed, x_coord ; move sprite left
 bra x_move_done ; done moving sprite in x
x_move_right
 add.w #x_speed, x_coord ; move sprite right
x_move_done

 cmp #0, y_heading ; check y heading
 bne y_move_down ; if 1, move down, otherwise up
 sub.w #y_speed, y_coord ; move sprite up
 bra y_move_done ; done moving sprite in y
y_move_down
 add.w #y_speed, y_coord ; move sprite down
y_move_done

First, a check to see if X heading is 0, if it is, move to the left, otherwise move to the right. If
we move to the left, we subtract the X coordinate by the X speed, and we must also make
sure to jump past the move to the right. The Y part is exactly as the X part. Again, just look
one more time at the code and if it seems confusing, write it down on paper if you must and
go through the different possible branches, it’s not too complex once you structuralize it.

Hoah, this takes time to explain, hope you’re still with me 'cus we are almost done. Now we
know how to pre-shift, apply the sprite and move it. One would think that we have all we
need, there is just one more thing to take into account. If we would apply the things we
know and fire away, we would have a sprite that moves over the screen and leaves a trail.

The damn thing will never go away, making it most ugly. Why? Because the background must
be restored when the sprite has passed it.

So, on every VBL, the background must first be restored, then it must be saved after the
sprite coordinates are updated, since the save and restore routine is dependent on the sprite
coordinates. Then we can paint the sprite. The save routine just copies a sprite sized block
from the screen memory into a save buffer, and the restore routine copies the data from the
buffer onto the screen.

What we have now is a main routine that restores background, moves the sprite (rather
updates the sprite coordinates), saves the background, applies the mask and lastly paints the
sprite. All of this is so fast, that we don’t even have to bother with double buffering, so we
pull a fast one and just skip that. Here comes the entire source code, don’t panic, most of the
stuff will be familiar.

 x_speed equ 2 ; how many x coord to move each VBL
y_speed equ 1 ; how many y coord to move each VBL

 jsr initialise

; pre-shifting sprite
 move.l #spr_dat, a0 ; original sprite data
 add.l #34, a0 ; skip palette
 move.l #sprite, a1 ; storage of pre-shifted sprite

 move.l #32-1, d0 ; 32 scan lines per sprite
first_sprite
 move.l (a0)+, (a1)+ ; move from original to pre-shifted
 move.l (a0)+, (a1)+
 move.l (a0)+, (a1)+
 move.l (a0)+, (a1)+ ; 32 pixels moved
 add.l #8, a1 ; jump over end words
 add.l #144, a0 ; jump to next scan line
 dbf d0, first_sprite
; the picture sprite has been copied to first position in pre-shift

 move.l #sprite, a0 ; point to beginning of storage area
 move.l #sprite, a1 ; point to beginning of storage area
 add.l #768, a1 ; point to next sprite position

 move.l #15-1, d1 ; 15 sprite positions left
positions
 move.l #32-1, d2 ; 32 scan lines per sprite
line
 move.l #4-1, d3 ; 4 bit planes
plane
 move.w (a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 move.w d0, (a1) ; put it in place

 move.w 8(a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 move.w d0, 8(a1) ; put it in place

 move.w 16(a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 move.w d0, 16(a1) ; put it in place

 add.l #2, a0 ; next bit plane, also clears X flag
 add.l #2, a1 ; next bit plane

 dbf d3, plane

 add.l #16, a0 ; next scan line
 add.l #16, a1 ; next scan line

 dbf d2, line

 dbf d1, positions
; pre-shift of sprite done, all 16 sprite possitions saved in sprite

; pre-shifting mask
 move.l #spr_dat, a0
 add.l #34+160*32, a0 ; skip palette and sprite
 move.l #mask, a1 ; load up mask part

 move.l #32-1, d0 ; 32 scan lines per sprite
first_mask
 move.l (a0)+, (a1) ; move from original to pre-shifted
 not.l (a1)+ ; invert the mask data
 move.l (a0)+, (a1)
 not.l (a1)+ ; invert the mask data
 move.l (a0)+, (a1)
 not.l (a1)+ ; invert the mask data
 move.l (a0)+, (a1) ;
 not.l (a1)+ ; invert the mask data
 move.l #$ffffffff, (a1)+ ; fill last two words...
 move.l #$ffffffff, (a1)+ ; ... with all 1's

 add.l #144, a0 ; jump to next scan line
 dbf d0, first_mask
; the picture mask has been copied to first position in pre-shift

 move.l #mask, a0 ; point to beginning of storage area
 move.l #mask, a1 ; point to beginning of storage area
 add.l #768, a1 ; point to next mask position

 move.l #15-1, d1 ; 15 sprite positions left
positions_mask
 move.l #32-1, d2 ; 32 scan lines per sprite
line_mask
 move.l #4-1, d3 ; 4 bit planes
plane_mask
 move.w (a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 or.w #%1000000000000000, d0 ; make sure most significant bit set
 move.w d0, (a1) ; put it in place

 move.w 8(a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 move.w d0, 8(a1) ; put it in place

 move.w 16(a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 move.w d0, 16(a1) ; put it in place

 add.l #2, a0 ; next bit plane, clears X flag (bad)
 add.l #2, a1 ; next bit plane

 dbf d3, plane_mask

 add.l #16, a0 ; next scan line
 add.l #16, a1 ; next scan line

 dbf d2, line_mask

 dbf d1, positions_mask
; pre-shift of mask done, all 16 sprite possitions saved in mask

 movem.l bg+2, d0-d7
 movem.l d0-d7, $ff8240

 move.l #bg+34, a0 ; pixel part of background
 move.l $44e, a1 ; put screen memory in a1
 move.l #7999, d0 ; 8000 longwords to a screen
pic_loop
 move.l (a0)+, (a1)+ ; move one longword to screen
 dbf d0, pic_loop ; background painted

 jsr save_background ; something in restore buffer

 move.l $70, old_70 ; backup $70
 move.l #main, $70 ; put in main routine

 move.w #7, -(a7)
 trap #1
 addq.l #2, a7 ; wait keypress

 move.l old_70, $70 ; restore old $70

 jsr restore

 clr.l -(a7)
 trap #1 ; exit

main
 movem.l d0-d7/a0-a6, -(a7) ; backup registers

 jsr restore_background
 jsr move_sprite
 jsr save_background
 jsr apply_mask
 jsr put_sprite

 movem.l (a7)+, d0-d7/a0-a6 ; restore registers

 rte

move_sprite
; moves the sprite one pixel in x and y
; see if any headings need to be changed
 cmp #319-32-x_speed+1, x_coord
 blt x_right_ok ; see if x is < 319-32 for width
 move.w #0, x_heading ; if x >=319, change heading
x_right_ok

 cmp #0, x_coord
 bgt x_left_ok ; see if x is > 0
 move.w #1, x_heading ; if x <=0, change heading
x_left_ok

 cmp #199-32-y_speed+1, y_coord
 blt y_low_ok ; see if y is < 199-32 for lines
 move.w #0, y_heading ; if y >=199, change heading
y_low_ok

 cmp #0, y_coord
 bgt y_high_ok ; see if y is > 0
 move.w #1, y_heading ; if y <=0, change heading
y_high_ok
; all eventual heading changes now made

; move sprite coordinates (change coordinates)
 cmp #0, x_heading ; check x heading
 bne x_move_right ; if 1, move right, otherwise left
 sub.w #x_speed, x_coord ; move sprite left
 bra x_move_done ; done moving sprite in x
x_move_right
 add.w #x_speed, x_coord ; move sprte right
x_move_done

 cmp #0, y_heading ; check y heading
 bne y_move_down ; if 1, move down, otherwise up
 sub.w #y_speed, y_coord ; move sprite up
 bra y_move_done ; done moving sprite in y
y_move_down
 add.w #y_speed, y_coord ; move sprte down
y_move_done
; finnished moving sprite

 rts

apply_mask
; applies the mask to the background
 jsr get_coordinates
 move.l #mask, a0
 mulu #768, d0 ; multiply position with size
 add.l d0, a0 ; add value to mask pointer

 move.l #32-1, d7 ; mask is 32 scan lines
maskloop
 rept 6 ; mask is 6*4 bytes width
 move.l (a0)+, d0 ; mask data in d0
 move.l (a1), d1 ; background data in d1
 and.l d0, d1 ; and mask and picture data
 move.l d1, (a1)+ ; move masked data to background
 endr
 add.l #136, a1 ; next scan line
 dbf d7, maskloop

 rts

put_sprite
; paints the sprite to the screen
 jsr get_coordinates
 move.l #sprite, a0
 mulu #768, d0 ; multiply position with size
 add.l d0, a0 ; add value to sprite pointer

 move.l #32-1, d7 ; sprite is 32 scan lines
bgloop
 rept 6 ; sprite is 6*4 bytes width
 move.l (a0)+, d0 ; sprite data in d0
 move.l (a1), d1 ; background data in d1
 or.l d0, d1 ; or sprite and background data
 move.l d1, (a1)+ ; move ored sprite data to background
 endr
 add.l #136, a1
 dbf d7, bgloop

 rts

save_background
; saves the background into bgsave
 jsr get_coordinates
 move.l #bgsave, a0

 move.l #32-1, d7 ; sprite is 32 scan lines
bgsaveloop
 rept 6 ; sprite is 6*4 bytes width
 move.l (a1)+, (a0)+ ; copy background to save buffer
 endr
 add.l #136, a1 ; next scan line
 dbf d7, bgsaveloop

 rts

restore_background
; restores the background using data from bgsave
 jsr get_coordinates
 move.l #bgsave, a0

 move.l #32-1, d7 ; sprite is 32 scan lines
bgrestoreloop
 rept 6 ; sprite is 6*4 bytes width
 move.l (a0)+, (a1)+ ; copy save buffer to background
 endr
 add.l #136, a1 ; next scan line
 dbf d7, bgrestoreloop

 rts

get_coordinates
; makes a1 point to correct place on screen
; sprite position in d0.b
 move.l $44e, a1 ; screen memory in a1
 move.w y_coord, d0 ; put y coordinate in d0
 mulu #160, d0 ; 160 bytes to a scan line
 add.l d0, a1 ; add to screen pointer
 move.w x_coord, d0 ; put x coordinate in d0
 divu.w #16, d0 ; number of clusters in low, bit in high
 clr.l d1 ; clear d1
 move.w d0, d1 ; move cluster part to d1
 mulu.w #8, d1 ; 8 bytes to a cluster
 add.l d1, a1 ; add cluster part to screen memory
 clr.w d0 ; clear out the cluster value
 swap d0 ; bit to alter in low part of d0

 rts

 include initlib.s

 section data
x_coord dc.w 0
y_coord dc.w 0
x_heading dc.w 1
y_heading dc.w 1

spr_dat incbin sprite.pi1
bg incbin autumn.pi1
old_70 dc.l 0

 section bss
sprite ds.l 3072 ; 32/2+8*32 bytes 16 positions / 4 for long
mask ds.l 3072 ; same as above
bgsave ds.l 192 ; 32/2+8*32 bytes / 4 for long

[image: tutorial 11 screenshot]

Figure 19. Sprite on autumn

The longest source to date, I’m truly starting to doubt the wisdom of putting the source code
here as well as in a separate file. Anyways, starting from beginning going down, this is what
it’s all about. The first two lines are the X and Y speed, you may play around with these
values to your hearts content, of course, setting them both to the same value will make the
sprite move in 45 degrees, while any other values will make the sprite move differently.

Then, the pre-shifting of the sprite and the mask, this has been dealt with extensively and
there is nothing more to add. After this, the background is also prepared, it’s just another
put-degas-file-in-screen-memory. Note here, that there is a background save, this is to make
sure something is in the save buffer before starting the main routine, otherwise the main
routine would start off by "restoring" a blank area, effectively deleting a sprite sized block of
the screen.

All preparations are done, just install the main routine, as described in tutorial 9.
Put our main routine in the $70 vector, to have it executed every VBL. Wait for a key press, during
which the main routine will execute continuously, and make a clean exit. Now, take note of
how nice and tidy the main routine is, it just consists of subroutine calls, making the structure
of the program very easy to read, and isolating each major part of the program for ease of
reading.

Each subroutine in turn relies upon the get_coordinates routine, which translates the x_coord
and y_coord into data intelligible to the program. As you can see in the comments at the start
of the get_coordinates subroutine, what the routine does is to put a pointer to the screen
memory in a0 and the sprite position (offset) in d0.b (meaning the least significant 8 bits of
the d0 register). Since each subroutine relies upon the get_coordinates routine, if a bug is
detected in the coordinate routine, it will only have to be dealt with in one place.

The save/restore background routines are short and simple and do little. They begin by
calling the get_coordinates routine in order to get a screen pointer, the sprite position is
uninteresting since they both deal with the entire sprite block.

The sprite and mask routines are very similar. Both begin by calling the get_coordinates
routine, in order to get a screen pointer and a sprite position. Then either the sprite or mask
area is loaded as appropriate, and the sprite position applied as an offset. Then comes a loop
of moving data from the background and sprite or mask. Then this data is either ANDed or
ORed as appropriate. The result is put back in the screen memory.

Well, that is that. I haven’t gone into everything in minute detail, but by now you shouldn’t
have to be baby nursed through every operation. The source code has many fun things you
can do with it yourself, so test around some in the critical areas. The obvious change is the
speed change, then, you can try commenting out some things in the main routine, and
change an OR to a MOVE in the sprite routine for example. I think it’s a good idea to play
around some with the source code, and try to predict the changes, in this way, you’ll really
understand the underlying mechanics.

The next tutorial will probably be a very small one, I’m even considering of calling it tutorial
11 part B, and might cover the well known "infinite trail" of sprites, since it’s ridiculously easy.
Somewhere soon I suppose I’ll do one on joystick and perhaps also mouse operation. I won’t
promise anything though. Big thanks again go out to Bruno Padinha, for providing valuable
feedback and hitting me on the head. Damn, now I have to think of a good quote as well,
this part is the hardest. ☺

Of Controlling The Puppets

Of Controlling The Puppets

 2002-07-13 (last edition of the initial revision)

I love the smell of napalm in the morning…​ it smells like victory

~ Apocalypse Now

Yep, here we go again, this time I think we’ll have a nice little tutorial on our hands, not that
big. It only concerns the workings of the joystick. It could’ve involved the mouse as well, but
to be honest I haven’t gotten the workings of the mouse down yet. The code will build
heavily on the previous tutorial, since we are going to move a sprite around with the joystick,
but you don’t need to understand the sprite parts of the code to understand the workings of
the joystick. If you don’t know what a joystick is, or if you don’t recognise the little sprite ship
used in the sample source, you are not allowed to read further. Please stop this instant and
browse the web for more generally related Atari information.

A while back, I thought the ST was so much cooler than your average PC, because with the
ST, you just have to plug in a joystick and it works. With a PC, you have to install drivers and
shit, and configure the exact joystick and generally mess around lots and perhaps even then
it won’t work or the program you want to run doesn’t support your joystick. All in all inferior
construction, or so I thought. Actually, with the ST, you also need to set up your own joystick
driver. In fact, since you usually don’t have a hard drive and the OS (operating system)
doesn’t have drivers for the joystick, every program needs it’s own drivers for the joystick.
Writing the joystick driver isn’t at all difficult, but you have to have some working knowledge
to do it.

There is a little 6301 processor inside the Atari ST, which takes care of the keyboard, the
mouse and the joystick. It even has a real time clock. This cute little chip is sometimes
referred to as the IKBD, for Intelligent KeyBoarD. It might be fun to know that the IKBD has
4K (4096 bytes) of ROM memory, and 128 bytes of RAM. ROM stands for Read Only Memory,
and as it says, it’s memory that can’t be altered, RAM is Random Access Memory and it is that
which we usually mean by memory. The 128 bytes of RAM on the IKBD are only used as a
temporal storage area. The reason for having a separate chip altogether taking care of the
keyboard, mouse and joystick is that those actions won’t burden the main processor (the
68000, the one we’ve been programming so far in these tutorials). Instead, we can poll the
IKBD as we choose, or tell it to report stuff in any way we choose, and just let the IKBD
worry about the details.

Our mission therefore is clear: we must find a way to make the IKBD report the status of the
joystick, and also find a way to read that status in some way. When that is accomplished, we
can use the sprite routine from the previous tutorial as it is, with only a change in the
move_sprite subroutine. The new subroutine will update the X and Y coordinates in
accordance with the joystick status instead of just moving it about.

Trap function 25 of the XBIOS will allow us to send commands to the IKBD. However, unlike
other trap calls, the input data is a pointer to a string of data. IKBD Protocol may
seem very sketchy and difficult to understand, but it does contain a list of all the possible
commands that you can send to the IKBD, taking a look inside it, we see function $14. IKBD
command $14 will report joystick status every time the joystick is changed. All well and good,
this is how we set it up.

 move.l #joy_on, -(a7) ; pointer to IKBD instructions
 move.w #0, -(a7) ; instruction length - 1
 move.w #25, -(a7) ; send instruction to IKBD
 trap #14
 addq.l #8, a7

joy_on dc.b $14

The first parameter is a pointer to the address which contains the commands, the second
parameter is the length in bytes of the command list minus one, in this case zero. Then the
function number, a trap calling XBIOS and a normal stack clean up. Sure, so now the joystick
reports information, but where does the information go? Well, actually we need to write our
own routine to read the joystick information.

Every time the joystick sends information, there is a jump to an address with instructions of
what to do with this data, compare this with the timers from tutorial 9.
Also, as with the timers, we will hook up our own routine to read the joystick. With trap
function 34 of the XBIOS, the IKBD returns a list of all its vectors. The address of the IKBD
vectors is put in d0. The joystick report vector is at offset 24, so by putting our own
joystick routine at the address pointed to by d0+24, we have effectively hooked up our
own joystick routine.

 move.w #34, -(a7)
 trap #14
 addq.l #2, a7 ; return IKBD vector table

 move.l d0, ikbd_vec ; store IKBD vectors address
 move.l d0, a0 ; a0 points to IKBD vectors
 move.l 24(a0), old_joy ; backup old joystick vector
 move.l #read_joy, 24(a0) ; input our joystick vector

read_joy
 nop ; so far, we don't know what to do
 rts ; note, rts, not rte

dc.l ikbd_vec ; old IKBD vector storage
dc.l old_joy ; old joy vector storage

Straightforward, first get the address of the IKBD vectors. Store it for future restoration. Then
put the address in a0 so that a0 points to the IKBD vectors, backup the old joystick vector
which is found at offset 24, and input our own joystick routine. By the way, the mouse vector
is at offset 16. With the help of this and the information given on the other IKBD commands
on appendices/ikbd.txt[IKBD Protocol], you should be able to setup your own mouse routine as well.

The joystick routine ends with an rts, nothing else, and may not take more than 1/100 of a
second (half a VBL, more than enough time really). What happens now is that each time the
joystick status is changed, the ST will jump to our joystick routine. Once there, a0 will point
to three bytes in memory which contain the status of the joysticks.

The first of these bytes is a header telling us which joystick it was that did something. The
byte will contain $FE if joystick 0 did something, and $FF if it was joystick 1 (meaning the last
bit represents either joystick 0 or joystick 1). Remember, joystick 0 is the joystick port shared
with the mouse, and joystick 1 is the port exclusively for joysticks. The next two bytes
contain the actual information for the joysticks. The first one holds status for joystick 0, and
the other one for joystick 1. The data has this structure

	F
	0
	0
	0
	R
	L
	D
	U

	7

	6

	5

	4

	3

	2

	1

	0

	(F = fire, R = right, L = left, D = down, U = up)

So if bit 7 is set, the fire button was pressed, if bit 0 is set, the joystick is moved up, if bit 0,
2 and 7 are set, the joystick is moved up-right while the fire button is being pressed. Real
simple. Here’s a joystick routine that will simply store the joystick data in memory, two
different variables could have been used instead of course (but this is good practice on
addressing modes).

 read_joy
; executes every time joystick information is changed
 move.b 1(a0), joy ; store joy 0 data
 move.b 2(a0), joy+1 ; store joy 1 data
 rts

joy ds.b 2 ; storage for joystick data

That’s it! Well, almost. We must restore our poor system, for one thing, it would be good to
turn the mouse back on :) When we turn on the joystick, the mouse is turned off. In order to
turn it on, we send command $08 to the IKBD, to put the mouse in relative report mode,
which would probably be the default mode for the mouse then. While we’re at it, might be
good to restore the joystick vector as well. For the curious lot out there, "mus" is Swedish for
mouse, and it’s a suitable short form for mouse as well.

 move.l #mus_on, -(a7) ; pointer to IKBD instruction
 move.w #0, -(a7) ; length of instruction - 1
 move.w #25, -(a7) ; send instruction to IKBD
 trap #14
 addq.l #8, a7

 move.l ikbd_vec, a0 ; a0 points to old IKBD vectors
 move.l old_joy, 24(a0) ; restore joystick vector

mus_on dc.b $08
ikbd_vec ds.l 1 IKBD vector storage
old_joy ds.l 1 old joy vector storage

Two other commands of the IKBD that might be good to know about are $1A, which turns off
the joystick, and $12 which turns off the mouse. Let’s say we want to be on the really safe
side and not only turn on joystick reporting but also turn off mouse reporting, it would look
thusly

 move.l #joy_on, -(a7) ; pointer to IKBD instructions
 move.w #1, -(a7) ; instruction length - 1
 move.w #25, -(a7) ; send instruction to IKBD
 trap #14
 addq.l #8, a7

joy_on dc.b $14, $12

Note how the extra parameters are just appended to the command list, and the update of the
instruction length parameter to reflect the new command list length. Here comes the source
of the program, hold on!

 jsr initialise

; pre-shifting sprite
 move.l #spr_dat, a0 ; original sprite data
 add.l #34, a0 ; skip palette
 move.l #sprite, a1 ; storage of pre-shifted sprite

 move.l #32-1, d0 ; 32 scan lines per sprite
first_sprite
 move.l (a0)+, (a1)+ ; move from original to pre-shifted
 move.l (a0)+, (a1)+
 move.l (a0)+, (a1)+
 move.l (a0)+, (a1)+ ; 32 pixels moved
 add.l #8, a1 ; jump over end words
 add.l #144, a0 ; jump to next scan line
 dbf d0, first_sprite
; the picture sprite has been copied to first position in pre-shift

 move.l #sprite, a0 ; point to beginning of storage area
 move.l #sprite, a1 ; point to beginning of storage area
 add.l #768, a1 ; point to next sprite position

 move.l #15-1, d1 ; 15 sprite positions left
positions
 move.l #32-1, d2 ; 32 scan lines per sprite
line
 move.l #4-1, d3 ; 4 bit planes
plane
 move.w (a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 move.w d0, (a1) ; put it in place

 move.w 8(a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 move.w d0, 8(a1) ; put it in place

 move.w 16(a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 move.w d0, 16(a1) ; put it in place

 add.l #2, a0 ; next bit plane, also clears X flag
 add.l #2, a1 ; next bit plane

 dbf d3, plane

 add.l #16, a1 ; next scan line
 add.l #16, a0 ; next scan line

 dbf d2, line

 dbf d1, positions
; pre-shift of sprite done, all 16 sprite positions saved in sprite

; pre-shifting mask
 move.l #spr_dat, a0
 add.l #34+160*32, a0 ; skip palette and sprite
 move.l #mask, a1 ; load up mask part

 move.l #32-1, d0 ; 32 scan lines per sprite
first_mask
 move.l (a0)+, (a1) ; move from original to pre-shifted
 not.l (a1)+ ; invert the mask data
 move.l (a0)+, (a1)
 not.l (a1)+ ; invert the mask data
 move.l (a0)+, (a1)
 not.l (a1)+ ; invert the mask data
 move.l (a0)+, (a1)
 not.l (a1)+ ; invert the mask data
 move.l #$ffffffff, (a1)+ ; fill last two words...
 move.l #$ffffffff, (a1)+ ; ... with all 1's

 add.l #144, a0 ; jump to next scan line
 dbf d0, first_mask
; the picture mask has been copied to first position in pre-shift

 move.l #mask, a0 ; point to beginning of storage area
 move.l #mask, a1 ; point to beginning of storage area
 add.l #768, a1 ; point to next mask position

 move.l #15-1, d1 ; 15 sprite positions left
positions_mask
 move.l #32-1, d2 ; 32 scan lines per sprite
line_mask
 move.l #4-1, d3 ; 4 bit planes
plane_mask
 move.w (a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 or.w #%1000000000000000, d0 ; make sure most significant bit set
 move.w d0, (a1) ; put it in place

 move.w 8(a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 move.w d0, 8(a1) ; put it in place

 move.w 16(a0), d0 ; move one word
 roxr #1, d0 ; pre-shift
 move.w d0, 16(a1) ; put it in place

 add.l #2, a1 ; next bit plane
 add.l #2, a0 ; next plane, clears X flag (bad)

 dbf d3, plane_mask

 add.l #16, a1 ; next scan line
 add.l #16, a0 ; next scan line

 dbf d2, line_mask

 dbf d1, positions_mask
; pre-shift of mask done, all 16 sprite positions saved in mask

 movem.l bg+2, d0-d7
 movem.l d0-d7, $ff8240

 move.l #bg+34, a0 ; pixel part of background
 move.l $44e, a1 ; put screen memory in a1
 move.l #7999, d0 ; 8000 longwords to a screen
pic_loop
 move.l (a0)+, (a1)+ ; move one longword to screen
 dbf d0, pic_loop ; background painted

 jsr save_background ; something in restore buffer

; joy code
 move.w #34, -(a7)
 trap #14
 addq.l #2, a7 ; return IKBD vector table

 move.l d0, ikbd_vec ; store IKBD vectors address
 move.l d0, a0 ; a0 points to IKBD vectors
 move.l 24(a0), old_joy ; backup old joystick vector
 move.l #read_joy, 24(a0) ; input my joystick vector

 move.l #joy_on, -(a7) ; pointer to IKBD instructions
 move.w #0, -(a7) ; instruction length - 1
 move.w #25, -(a7) ; send instruction to IKBD
 trap #14
 addq.l #8, a7
; end joystick init

 move.l $70, old_70 ; backup $70
 move.l #main, $70 ; put in main routine

 move.w #7, -(a7)
 trap #1
 addq.l #2, a7 ; wait keypress

 move.l old_70, $70 ; restore old $70

; joy code
 move.l #mus_on, -(a7) ; pointer to IKBD instruction
 move.w #0, -(a7) ; length of instruction - 1
 move.w #25, -(a7) ; send instruction to IKBD
 trap #14
 addq.l #8, a7

 move.l ikbd_vec, a0 ; a0 points to old IKBD vectors
 move.l old_joy, 24(a0) ; restore joystick vector
; end shut down

 jsr restore

 clr.l -(a7)
 trap #1 ; exit

main
 movem.l d0-d7/a0-a6, -(a7) ; backup registers

 jsr restore_background
 jsr move_sprite
 jsr save_background
 jsr apply_mask
 jsr put_sprite

 movem.l (a7)+, d0-d7/a0-a6 ; restore registers

 rte

move_sprite
; updates x and y coordinates according to joystick 1
; if fire button pressed, add 1 to colour 0
 move.b joy+1, d0 ; check joystick 1

 cmp #128, d0 ; fire
 blt no_fire
 add.w #$001, $ff8240
 and.b #%01111111, d0 ; clear fire bit
no_fire

 cmp.b #1, d0 ; up
 beq up
 cmp.b #2, d0 ; down
 beq down
 cmp.b #4, d0 ; left
 beq left
 cmp.b #8, d0 ; right
 beq right
 cmp.b #9, d0 ; up-right
 beq up_right
 cmp.b #10, d0 ; down-right
 beq down_right
 cmp.b #6, d0 ; down-left
 beq down_left
 cmp.b #5, d0 ; up-left
 beq up_left
 bra done
up
 sub.w #1, y_coord
 bra done
down
 add.w #1, y_coord
 bra done
left
 sub.w #1, x_coord
 bra done
right
 add.w #1, x_coord
 bra done
up_right
 sub.w #1, y_coord
 add.w #1, x_coord
 bra done
down_right
 add.w #1, y_coord
 add.w #1, x_coord
 bra done
down_left
 add.w #1, y_coord
 sub.w #1, x_coord
 bra done
up_left
 sub.w #1, y_coord
 sub.w #1, x_coord
 bra done
done

; avoid going outside screen
 cmp #319-32, x_coord
 blt x_right_ok
 move.w #319-32, x_coord
x_right_ok

 cmp #0, x_coord
 bgt x_left_ok
 move.w #0, x_coord
x_left_ok

 cmp #199-32, y_coord
 blt y_low_ok
 move.w #199-32, y_coord
y_low_ok

 cmp #0, y_coord
 bgt y_high_ok
 move.w #0, y_coord
y_high_ok
 rts

read_joy
; executes every time joystick information is changed
 move.b 1(a0), joy ; store joy 0 data
 move.b 2(a0), joy+1 ; store joy 1 data
 rts

apply_mask
; applies the mask to the background
 jsr get_coordinates
 move.l #mask, a0
 mulu #768, d0 ; multiply position with size
 add.l d0, a0 ; add value to mask pointer

 move.l #32-1, d7 ; mask is 32 scan lines
maskloop
 rept 6 ; mask is 6*4 bytes width
 move.l (a0)+, d0 ; mask data in d0
 move.l (a1), d1 ; background data in d1
 and.l d0, d1 ; and mask and picture data
 move.l d1, (a1)+ ; move masked picture data to background
 endr
 add.l #136, a1 ; next scan line
 dbf d7, maskloop

 rts

put_sprite
; paints the sprite to the screen
 jsr get_coordinates
 move.l #sprite, a0
 mulu #768, d0 ; multiply position with size
 add.l d0, a0 ; add value to sprite pointer

 move.l #32-1, d7 ; sprite is 32 scan lines
bgloop
 rept 6 ; sprite is 6*4 bytes width
 move.l (a0)+, d0 ; sprite data in d0
 move.l (a1), d1 ; background data in d1
 or.l d0, d1 ; or sprite and background data
 move.l d1, (a1)+ ; move ored sprite data to background
 endr
 add.l #136, a1
 dbf d7, bgloop

 rts

save_background
; saves the background into bgsave
 jsr get_coordinates
 move.l #bgsave, a0

 move.l #32-1, d7 ; sprite is 32 scan lines
bgsaveloop
 rept 6 ; sprite is 6*4 bytes width
 move.l (a1)+, (a0)+ ; copy background to save buffer
 endr
 add.l #136, a1 ; next scan line
 dbf d7, bgsaveloop

 rts

restore_background
; restores the background using data from bgsave
 jsr get_coordinates
 move.l #bgsave, a0

 move.l #32-1, d7 ; sprite is 32 scan lines
bgrestoreloop
 rept 6 ; sprite is 6*4 bytes width
 move.l (a0)+, (a1)+ ; copy save buffer to background
 endr
 add.l #136, a1 ; next scan line
 dbf d7, bgrestoreloop

 rts

get_coordinates
; makes a1 point to correct place on screen
; sprite position in d0.b
 move.l $44e, a1 ; screen memory in a1
 move.w y_coord, d0 ; put y coordinate in d0
 mulu #160, d0 ; 160 bytes to a scan line
 add.l d0, a1 ; add to screen pointer
 move.w x_coord, d0 ; put x coordinate in d0
 divu.w #16, d0 ; number of clusters in low, bit in high
 clr.l d1 ; clear d1
 move.w d0, d1 ; move cluster part to d1
 mulu.w #8, d1 ; 8 bytes to a cluster
 add.l d1, a1 ; add cluster part to screen memory
 clr.w d0 ; clear out the cluster value
 swap d0 ; bit to alter in low part of d0

 rts

 include initlib.s

 section data
x_coord dc.w 150
y_coord dc.w 80

spr_dat incbin ship.pi1
bg incbin xenon.pi1
old_70 dc.l 0

joy_on dc.b $14
mus_on dc.b $08
ikbd_vec dc.l 0
old_joy dc.l 0

 section bss
sprite ds.l 3072 ; 32/2+8*32 bytes * 16 positions / 4 for long
mask ds.l 3072 ; same as above
bgsave ds.l 192 ; 2/2+8*32 bytes / 4 for long
joy ds.b 2

[image: tutorial 12 screenshot]

Figure 20. Xenon 2

Yup, another long source code. There are big similarities between the sprite tutorial though,
since we’re basically doing the same thing. The new things are of course the joystick on and
off, which are located between the "; joy code" comments, after the pre-shiftings. Nothing to
say there that hasn’t been said before. Same with the joystick routine. The move_sprite
routine is all new and deserves attention.

It begins by moving the joystick data to d0. In this case, I only check joystick 1. First I begin
by checking for the fire button, this is done by seeing if d0 contains a number larger than or
equal to 128. If the fire button is pressed, the 8th bit (bit 7, start counting from 0 and from
the rightmost bit) in the joystick status byte is set which means that the byte will hold a value
equal to or higher than 128, since %10000000 = 128. Then I clear out the fire bit so that it
won’t bother me anymore.

Next I check for joystick movement. This is done by using the same method as above. For
example, if the joystick is down-left, then bit 1 and 2 are set, meaning the byte will hold
value %00000110 = 6. This is the reason for clearing out the fire bit above. If it hadn’t been
cleared, the number would be either 6 or 128 + 6 = 134 for down-right. So just run through
all 8 directional checks to see if any bits are set, if they are not, I just branch right away to
done. If this branch hadn’t been there, the program would just continue and execute the
code associated with joystick up if the joystick wasn’t moved at all. An early bug that caused
me some confusion.

After the coordinates have been changed accordingly, I also check to see that the sprite isn’t
out of bounds, since this could cause a crash and be generally stupid in all kinds of ways. So
just check if the coordinates are right, and if they’re not, reset them to the closest correct
value. If you want a speedier ship, just increase the speed accordingly, adding more than one
to the coordinates, and also remember to include this in the boundary check, just as the
sprite.

Some of you will probably notice that the ship itself is not 32 scan lines, although I treat the
sprite as such. This has the effect of the ship never reaching all the way down the screen,
since there is some black space worth of sprite data. This could be easily fixed of course, but
I didn’t. Also, two ships moving might be nice, at first I considered having both the Xenon 2
ship and the Xenon 1 ship side by side, controlled by two joysticks, but I decided to keep it
simple. However, there should be no big trouble incorporating that, and changing the fire
button perhaps to morph the Xenon 1 ship.

Having two sprites is no harder than having one sprite, the only thing you have to think about
is the order of painting the sprites, the ones painted first will be painted over by the ones that
come next. Yet another cool thing is to change the look of the sprite as you move it, like in
the real Xenon game, they have the ship tilted sideways and generate rocket fire when it
moves, all you need is a flag to know which state the ship is in and change the sprite address
accordingly.

This means having a sprite picture with not just one ship, but the ship tilted in directions and
with rocket flames, all in all lots of pictures. All of these sprites will of course fit in one degas
picture, so all you need is the correct offset into this picture depending on what "mode" the
sprite is in. Compare this to the way we address the sprite mask, only in this case it’s a
different sprite (or different look of the sprite, depending on how you see it).

Now you have the tools needed to create a game, or even a demo for that matter: now go to
it! Even though there is still much to learn, the basics have been covered, all but one thing:
music and sound. It is my hope that this will come soon. But you don’t have to worry about
that for now, code away and the music will be easily incorporated at a later stage.

Usually, you just hook up the music in your VBL routine. On the Dead Hackers Society page,
http://dhs.nu/, there are two chip editors (at least) with instructions on how to play the
generated music in assembler: Edsynth and the XLR8. Go take a look at them if you’re
curious, there should be no trouble understanding the code.

Of Hearing That Which Is Spoken

Of Hearing That Which Is Spoken

 2002-07-28 (last edition of the initial revision)

I can kill with a word.

~ Dune the Movie

No demo or game is complete without music. The nice blip-blop tunes known as chip music is
one of the sweetest forms of music that’s ever reached my ears. Seems some people don’t
quite fancy the type of music the ST has to offer, but I think it’s divine. I’m no musician,
that’s probably why a tutorial on sound has been somewhat delayed, but here it finally is. It’s
a small tutorial to get down the basics of the sound chip, I intend to follow up with another
tutorial on playing the .ym file format, created by Arnaud Carré for the ST-sound project. He’s
got a homepage over at http://leonard.oxg.free.fr.

The Atari ST comes equipped with a so called PSG: Programmable Sound Generator. This is
yet another chip in the ST, the Yamaha YM-2149, fondly called "yammy". According to the ST
Internals, this cool chip sports lots of features, for example three independently
programmable sound generators, 15 logarithmically volume levels and 16 registers. Registers,
yes, just give me the tech specs, register addresses and I’ll start to outdo Mozart!

Things aren’t that easy though, it would take insanity to hard code the sound chip. By hard
coding I mean just entering numbers into the registers, rather than using some program to
make music. There is also a little something here, again according to the ST Internals, it’s not
possible to directly address the yammy registers. Instead, you have to put the desired
register number in $ff8800, and then you can put data in $ff8802, or read data from $ff8800.
Don’t worry, soon comes an explanation of how that applies to real life, but just to be
complete, here’s a listing of the registers.

	Register
	Effect

	0,1

	Period, length and pitch of channel A

	2,3

	Period, length and pitch of channel B

	4,5

	Period, length and pitch of channel C

	6

	Noise generator

	7

	Bit 0: channel A tone on/off (0 = on, 1 = off)

 Bit 1: channel B tone on/off (0 = on, 1 = off)

 Bit 2: channel C tone on/off (0 = on, 1 = off)

 Bit 3: channel A noise on/off (0 = on, 1 = off)

 Bit 4: channel B noise on/off (0 = on, 1 = off)

 Bit 5: channel C noise on/off (0 = on, 1 = off)

 Bit 6: port A input/output

 Bit 7: port B input/output

	8

	Bit 0-3 channel A volume, if bit 4 set, envelope and bit 0-3 ignored

	9

	Bit 0-3 channel B volume, if bit 4 set, envelope and bit 0-3 ignored

	10

	Bit 0-3 channel C volume, if bit 4 set, envelope and bit 0-3 ignored

	11,12

	Sustain, 11 low byte and 12 high byte

	13

	Waveform envelope

	14,15

	Port A and Port B, used for output

Like I said, I’m not a musician and I don’t understand too much of this. For me, there are
only 4 interesting registers: 7-10. Why? Because with register 7, I can turn on and off
different channels, and with 8-10 I can determine the current volume and also set the
volume. In other words, registers 8-10 can be used to fade music in and out, as well as
create cool bars that go up and down to the beat of the music (or you can have three
pulsating sprites or whatever). Here’s some example code on how to use the yammy.

 move.b #7, $ff8800 ; access Yamaha register 7
 move.b #%101, $ff8802 ; turn off channel A and C

As the comments say, this will turn off all (tone) sound from channels A and C. Note how
only a byte is moved in both instances, and note also that setting a bit means turning the
channel off. Here’s how to read the volume of channel A:

 move.b #8, $ff8800 ; channel A volume
 move.b $ff8800, d0 ; channel A volume in d0

Yep, when you want to read data, you put the register number in $ff8800 as usual, but then
you move the data from $ff8800. This obviously means that $ff8800 gets updated between
the two move instructions in some way. That’s all there is to it actually, but in practice it
becomes a little harder.

Sure, we have a basic working of the yammy, well, actually we don’t but we know how to use
it anyway. Time to play some music perhaps. Most music plays by hooking it up to the VBL,
and then just jump to some address in the music file. This of course means that the music
file has it’s own code routines to play the music, and does not only contain raw music data.
The XLR8 chip composer, which can be found at http://dhs.nu/, comes with both some
example files and the source code for playing them. A good place to start. Here is the code
the XLR8 chip composer suggests for playing the music:

 pea 0.w
 move.w #32, -(sp)
 trap #1
 addq.l #6, sp

 moveq #1, d0 ; normal song-play mode
 bsr music

 move.l #music+2, $4d2 ; music in VBL
 move.w #7,-(sp) ; wait for a key
 trap #1
 addq.l #2,sp

 moveq #0,d0 ; exit music
 bsr music

 clr.l $4d2 ; clear VBL
 pea 0.w ; Back to desktop
 trap #1

music incbin f:\1.xms ; music file to include

Well well, they don’t even go out of supervisor mode, naughty naughty. Fairly straightforward
and easy, there is only one thing that would trouble us, the $4d2 address. We’re used to
have the VBL hooked up to $70. At address $4ce there are eight long words that point to VBL
routines. These VBL routines are executed one after another. So by writing to say $4ce and
$4ce+4, we can have two different VBL routines that get executed one after the other.

In the source code above, the author chooses to put the VBL routine in the second of these
eight VBL routines. Our way of writing to the $70 instead, is a bit rawer. Writing to $70
disables all VBL routines except the $70. This means that we know that our, and only our VBL
routine is the one to run. In any way, if we spot a memory address close to $4ce in some
future source code, we know that it’s a VBL routine. Translated into how we would code it, it
looks like this:

 moveq #1, d0 ; normal song-play mode

 jsr initialise

 moveq #1, d0 ; normal song play
 bsr music ; start music

 move.l $70, -(a7) ; backup $70
 move.l #main, $70 ; main routine on VBL
 move.w #7, -(a7)
 trap #1
 addq.l #2, a7 ; wait keypress
 move.l (a7)+, $70 ; restore $70
 jsr restore

 moveq #0, d0
 bsr music ; stop music

 clr.l -(a7)
 trap #1 ; exit

main
 movem.l d0-d7/a0-a6, -(a7) ; backup registers

 bsr music+2 ; play music

 movem.l (a7)+,d0-d7/a0-a6 ; restore registers
 rte

include initlib.s

 section data
music incbin 1.xms ; music file to include

Well, what do you know, ours became longer, but it’s built for more add-ons, and it also has
some backup feature such as getting out of supervisor mode, and it also has a section data.
Doesn’t really matter, both ways are equally fast really. Speaking of fast, there’s an
instruction here that I don’t think we’ve encountered before, the moveq instruction. moveq
stands for MOVE Quick. It works pretty much as a normal move, but it can only move
quantities in the range of -128 to +127 (a byte). The data does get sign extended though,
meaning it will take up a 32-bit quantity (long word). Thus a moveq.l #0, d0 clears d0
faster than a clr.l d0. Handy little instruction actually. You will also notice how I put $70
on the stack instead of saving it to a variable.

So we have a way of playing music, at least music composed with the XLR8 chip composer.
This is a little thin, so against our better knowledge, we decide it would be fun to do some
volume meters as well. In order to do these VU bars, we have to play the music, read
registers 8-10 (for volume) and then paint the VU bars. Yes, it’s true, the yammy has three
sound channels, meaning it can play up to three different sounds at once. It also has some
noise generator I think so it’s able to play four different sounds at once.

The volume is represented by the four least significant bits, meaning it’s a value between 0
and 15 (%1111), would be smart to paint one line of VU bar for each volume, right? So at
volume 15, the VU bar takes up 15 lines, this can be a little small though, so just for fun we
decide to leave every second line blank (background coloured), thus volume 15 will take up
30 lines instead. Since we have 15 different VU lines, each line can have it’s own colour and
we’ll still have one over for the background as well. Seems the ST was made for these things!
Actually, it wasn’t, it’s just normal for computers to have many things on binary bounders.
Thus the powers of two (such as 16, or 0-15) show up a lot.

As we know, the volume data may contain other stuff than just the four volume bits, so in
order to keep only those bits, we have to and off the other bits. Otherwise the volume data
might contain a number larger than 15 and that will screw us up big time, making us do
stupid things like drawing outside of the screen, which will probably result in a crash.

Now, to decide on how to draw the volume bars. What, should this be a problem? Just do a
dbf loop according to the volume and paint as many lines as the volume. Yes, that won’t
work. Say one VBL the volume is 12, then the other VBL it’s 5, but the VU bar will still be 12
lines high since we don’t delete it.

So on every VBL, we first delete the VU bar and then paint it. This can be done, but actually
it’s smarter to first paint the VU bar, then delete it. The delete part is more generic, and thus
easier to fit into a loop, while the paint part requires colour updates and so on. Thus, the VU
bar routine will be to first paint all three VU bars to the max, then delete as many lines as the
inverted volume (volume 15 means delete nothing, volume 0 means delete 15). This will work
nicely. Actually, theory part over, time for source code:

 jsr initialise

 moveq #1, d0 ; normal song play mode
 bsr music

 move.l #palette, a0 ; pointer to palette
 movem.l (a0)+, d0-d7 ; palette in d0-d7
 movem.l d0-d7, $ff8240 ; apply palette

 move.l $70, -(a7) ; backup $70
 move.l #main, $70 ; start main routine

 move.w #7, -(a7)
 trap #1
 addq.l #2, a7 ; wait keypress

 move.l (a7)+, $70 ; restore old $70

 moveq #0, d0 ; stop music
 bsr music

 jsr restore

 clr.l -(a7)
 trap #1 ; exit

main
 movem.l d0-d7/a0-a6, -(a7)

 bsr music+2 ; play music

; put in VU bars
 move.l $44e, a0 ; get screen address
 add.l #160*199-(15*2)*160, a0 ; bottom area of screen
 move.l #bar, a1 ; point to bar colours

 rept 15 ; 15 max volume
 movem.l (a1)+, d0-d1 ; VU bar colour in d1-d2
 movem.l d0-d1, (a0) ; first VU bar
 addq.l #8, a0 ; next VU bar
 movem.l d0-d1, (a0) ; second VU bar
 addq.l #8, a0 ; next VU bar
 movem.l d0-d1, (a0) ; third VU bar
 add.w #320-16, a0 ; two lines down, two bars left
 endr

; delete VU bars depending on volume
 move.l $44e, a0 ; get screen address
 add.l #160*199-(15*2)*160, a0 ; bottom area of screen

 moveq.l #0, d0 ; clear d0
 move.b #8, $ff8800 ; channel a volume
 move.b $ff8800, d0 ; put volume in d0
 jsr del_bar

 moveq.l #0, d0 ; clear d0
 move.b #9, $ff8800 ; channel b volume
 move.b $ff8800, d0 ; put volume in d0
 add.l #8, a0 ; next VU bar
 jsr del_bar

 moveq.l #0, d0 ; clear d0
 move.b #10, $ff8800 ; channel c volume
 move.b $ff8800, d0 ; put volume in d0
 add.l #8, a0 ; next VU bar
 jsr del_bar

 movem.l (a7)+, d0-d7/a0-a6
 rte

del_bar
; screen address of top line in a0
; volume in d0, gets detroyed
 move.l a0, -(a7) ; backup a0
 move.l a1, -(a7) ; backup a1
 and.b #%1111, d0 ; keep only lowest 4 bits

 move.l #delete, a1 ; beginning of delete blocks
 mulu #12, d0 ; length of one delete block
 add.l d0, a1 ; skip some delete instructions
 jmp (a1) ; jump to correct delete position

delete
 rept 15
 clr.l (a0) ; clear two bit planes
 clr.l 4(a0) ; clear two bit planes
 add.l #320, a0 ; hop two lines down
 endr

 move.l (a7)+, a1 ; restore a1
 move.l (a7)+, a0 ; restore a0
 rts

 include initlib.s

 section data
bar
; colour data for each line of VU bar
 dc.w $00ff, $00ff, $00ff, $00ff
 dc.w $0000, $00ff, $00ff, $00ff
 dc.w $00ff, $0000, $00ff, $00ff
 dc.w $0000, $0000, $00ff, $00ff
 dc.w $00ff, $00ff, $0000, $00ff
 dc.w $0000, $00ff, $0000, $00ff
 dc.w $00ff, $0000, $0000, $00ff
 dc.w $0000, $0000, $0000, $00ff
 dc.w $00ff, $00ff, $00ff, $0000
 dc.w $0000, $00ff, $00ff, $0000
 dc.w $00ff, $0000, $00ff, $0000
 dc.w $0000, $0000, $00ff, $0000
 dc.w $00ff, $00ff, $0000, $0000
 dc.w $0000, $00ff, $0000, $0000
 dc.w $00ff, $0000, $0000, $0000
 dc.w $00ff, $0000, $0000, $0000

palette
 dc.w $000, $023, $023, $024, $024, $025, $026, $026
 dc.w $027, $027, $227, $327, $427, $527, $627, $727

music incbin instinct.xms ; musicfile

[image: tutorial 13 screenshot]

Figure 21. Music

Here we go! Setup the music to work, then put in the palette. Backup the old $70 by putting
it on the stack, put in my own $70 routine, wait for keypress, shut down music, restore and
exit. All the usual stuff.

The main routine starts off by playing the music, that one simple command is enough to keep
the music running. Now comes the interesting part: putting in the VU bars. I get the screen
address, and go to the bottom area of the screen. This means go to the absolute bottom, line
199, and then hop 30 lines up. Because I want to paint the entire VU bar, and the VU bar is
15×2 lines high (max 15 volume and every second line is interlaced).

The actual painting of the VU bar is a bit tricky. I point to the bar label, which contains colour
data for the VU bars. Each little four word block here is data for a bit plane, so the first line is
colour 15. The reason for the two leading 0’s, is that I don’t want the entire bit plane filled, in
this way, only 8 pixels out of sixteen will be set.

 dc.w $00ff, $00ff, $00ff, $00ff

is the same as

 dc.w %0000000011111111
 dc.w %0000000011111111
 dc.w %0000000011111111
 dc.w %0000000011111111

And we know that by putting this into the screen memory, we will have 8 pixels with colour 0,
and then 8 pixels with colour 15. The next entry is

 dc.w $0000, $00ff, $00ff, $00ff

which is the same as

 dc.w %0000000000000000
 dc.w %0000000011111111
 dc.w %0000000011111111
 dc.w %0000000011111111

When we put this into screen memory, we get colour 14 in the last 8 pixels.

When pointing to the bar label, a1 points to memory that contains this data:
$00ff00ff00ff00ff. This data I move into d0 and d1 with a movem instruction, then I put that
data into the screen memory. Adding 8 to the screen memory pointer will put me on the next
VU bar, 16 pixels to the right, and then I move that same colour data into the screen memory
there, and repeat one last time. Then I need to correct the screen pointer: by adding 320, I
move two lines down, and then I need to subtract 16 from that to be on the first VU bar
position. Repeat all this 15 times to paint in all three VU bars full.

Now the time has come to delete the VU bars, so that they will reflect the value of the
volume. Again, get screen memory and go to the bottom area, pointing right at the topmost
line of the first VU bar. Clear d0 just to be sure there’s no garbage, and read Yamaha register
8, which is channel A volume. Now the volume is in d0, and the screen address is in a0, jump
into the del_bar routine to delete the bar.

The del_bar routine is also a bit tricky, and uses an almost dirty method. Backup the registers
so that they don’t get destroyed. This is good practice for sub routines, so that other
programmers can count on calling routines without having data destroyed. And away all bits
but the first four. Now we have pure volume data in d0.

It would be tempting to just go through a dbf loop to clear out the lines, but this won’t work.
A dbf loop always executes once, but in some circumstances, we don’t want the delete loop
to execute even once. So instead of having a loop, I have 15 blocks of delete data, each
block deletes one line of VU bar. By jumping into the correct block, I take away the exact
number of VU bar lines. Each delete block looks like this:

 clr.l (a0) ; clear two bit planes
 clr.l 4(a0) ; clear two bit planes
 add.l #320, a0 ; hop two lines down

This will clear out the four bit planes of a line, and then hop two lines down. This block takes
12 memory positions. Usually, an instruction takes a long word to store, these three
instructions are no exceptions. Since all instructions just get loaded into memory, we can
easily jump to them. Go into MonST mode to see this clear, in the instruction window, you’ll
see all instructions, and to the left of them you’ll see what memory position they occupy. By
adding 4 to the program counter, you usually skip one instruction.

For example, by jumping to the start of the delete blocks+12, we will skip one delete block.
In the del_bar routine, I have 15 delete blocks, I let a1 point to the beginning of these
blocks. Then I multiply the volume by 12, since this is the size of each delete block, add that
value to a1, and jump to the address a1 contains.

Say that we have volume one, this means execute 14 delete blocks, which will leave only one
line of VU bar left. 1×12 = 12, thus we will jump to the beginning of the delete blocks+12,
which will let us skip one delete block, and then we have 14 left. Here’s how it looks:

 Memory position (fictional)
$0 move.l $10, a1 ; beginning of delete blocks
$4 mulu #12, d0 ; length of one delete block
 ; d0 contains 12
$8 add.l d0, a1 ; skip some delete instructions
 ; a1 now contains $1c
$c jmp (a1) ; jump to $1c

$10 clr.l (a0) ; clear two bit planes
$14 clr.l 4(a0) ; clear two bit planes
$18 add.l #320, a0 ; hop two lines down

$1c clr.l (a0) ; clear two bit planes
$20 clr.l 4(a0) ; clear two bit planes
$24 add.l #320, a0 ; hop two lines down

$28 clr.l (a0) ; clear two bit planes
$2c clr.l 4(a0) ; clear two bit planes
$30 add.l #320, a0 ; hop two lines down
 ... ; 13 more delete blocks

That’s that. In short, the program only runs a VBL routine. This VBL routine plays the music,
and then paints in VU bars at max. Then the volume is read from yammy registers, for each
volume read, the del_bar routine is called which deletes as many lines as the inverted
volume. Then add 8 to the screen memory to point to the next VU bar, read the volume and
call the del_bar routine.

With this knowledge of the volume workings, you can have just about any effect tied to the
volume. I first had the background colour be set by the three channels, channel A for red
colour, channel B for green and channel C for blue. This created quite the psychedelic
background I can tell you ☺ One cool thing would be to have three Xenon 1 ships, that
morph back and forth between tank and ship, say that volume 15 means complete tank
morph, and 0 means ship, then volume 7 would be morph in between those. Once again,
your fantasy can run free!

In the next tutorial, I hope to cover the .ym file format as described in the beginning. This
will mean setting up our own routine to write raw data into the sound chip, which should be
quite easy. Just put register number as usual, then write the data found in the .ym file. Stay
tuned…​

Of Using The Gramophone

Of Using The Gramophone

 2003-02-22 (last edition of the initial revision)

They fought like warrior poets. They fought like Scotsmen and
won their freedom forever.

~ Braveheart

Wow, it really was a long time since the last tutorial. I’ve had more and more to do in school
and other things have popped up, maybe I just needed a break too. Now I really feel up to
writing again, thanks to some encouragement on the Atari forum (http://www.atari-forum.com/).

This here tutorial will be the follow up of the previous one, in which I promised to tell you
how to play the .ym files of the ST-sound format from Arnaud Carré. It will be quite easy and
a bit of a soft start actually. The focus lies not so much on the code, but how to find and
apply knowledge.

Like I always say, I am no musician, neither am I an artist, so therefore, I need to rip stuff or
have it made for me. I have loads of .ym files on my PC, which can be played by using a
plug-in for Winamp. Wouldn’t it be nice to be able to use this wealth of music? Yes it would, I
wonder how that can be achieved, here’s how.

In order to use the files, we need information on the file format. See tutorial 6
for a quick refresh on files if that’s needed. Load up a good search engine in the browser,
I used Google (http://www.google.com/). Now we want to find info on the .ym file format,
so a search string of "ym file format" would seem appropriate. Would you look at that, the
first find seems good, taking us to http://leonard.oxg.free.fr/ymformat.html. Quickly browsing
the side, we judge it seems to hold what we need. We also discover the file format is freeware,
so there’s no need to worry about the cops.
Hum hum, there seem to be different versions of the file format, didn’t know that…​ hum
hum, this information only applies to YM6, the latest version. "So YM6 is just a register dump
file", this is an important key, it tells us how the file format works. It seems that an .ym file is
simply a dump of the data used to play a song, but that’s not enough, we need to know how
the data is organized. Reading on…​ Ah, .ym files are packed using LHA, so that’s why they
are so small. Using the freeware UltimateZip (http://www.ultimatezip.com/), an .ym file can
be unpacked, or any other LHA packer, but UltimateZip is my choice of program.

Reading ever further down the page…​ ah, here it comes. The .ym file contains 16 bytes of
data for each frame, interleaved. Sure, the sound chip has 16 registers, so by just putting the
data into the registers of the sound chip, music should be played. Lastly, there’s some info on
the file header. Some files have headers that tell of important information for the rest of the
file, here for example, it’s nice to know how long a song actually is. There’s some talk about
digi-drums and so, that will not be covered in this tutorial and you are welcome to explore it
yourself.

So, now we have all the information we need, we just have to structure it and go through it.
Load up the included .ym file jamblv1.ym in your favourite hex-editor. It’s also possible to
put it in an otherwise empty source file, assemble it and go into the debugger like this

 nop
incbin jamblv1.ym

Listing 1. Hex dump of the beginning of jamblv1.ym
 00000000 59 4d 36 21 4c 65 4f 6e 41 72 44 21 00 00 0b ea |YM6!LeOnArD!....|
00000010 00 00 00 00 00 00 00 1e 84 80 00 32 00 00 00 00 |...........2....|
00000020 00 00 37 20 47 61 74 65 73 20 6f 66 20 4a 61 6d |..7 Gates of Jam|
00000030 62 61 6c 61 20 4c 65 76 65 6c 20 31 00 4a 6f 63 |bala Level 1.Joc|
00000040 68 65 6e 20 48 69 70 70 65 6c 00 43 6f 6e 76 65 |hen Hippel.Conve|
00000050 72 74 65 64 20 62 79 20 4c 65 6f 6e 61 72 64 00 |rted by Leonard.|
00000060 ed ec ec ed ee ef f0 ef ee ed ec ec ed ee ef f0 |................|
00000070 ef ee ed ec ec ed ee ef f0 ef ee ed ec ec ed ee |................|
00000080 ef f0 ef ee ed ec ec ed ee ef f0 ef ee ed ec ec |................|
00000090 ed ee ef f0 ef ee ed ec ec ed ee ef f0 ef ee ed |................|

It seems that every program starts with two bytes of data that would overwrite the data in
jamblv1.ym, that’s what the NOP is there for. By hitting tab once to get into the memory
window, you can use the arrow keys to scroll up and down in the jamblv1.ym file. Now we’ll
traverse the file and see if it corresponds to the information we have on what the file should
look like. It starts with the values $59, $4d and $21, which identifies the file as an YM6 file.
When interpreted as ASCII (numbers to letters), these numbers become the letters Y, M and
!. Next follows a test string, "LeOnArD!", all good so far.

After the initial check-things comes the interesting information, a long (4 bytes) that tells us
the number of frames in the file. In this case, it’s a value of $0000bea, which corresponds to
3050 in decimal. Note that I wrote out the leading two bytes that for now only contain zeros,
but they are important to count otherwise you’ll get lost. What does this mean exactly? Well,
frame of music is just like a frame of graphics, the ST usually operates at 50 Hertz which
equals 50 frames per second. So we divide 3050 by 50 and get the value 61, indicating the
tune should be 1:01 long. Load it up in Winamp to test, yep, seems to be right.

Next comes four bytes of song attributes, that I have no idea what it is, but zero seems to be
a safe value, and two bytes of digi-drums, which are also zero. Some files have a song
attribute of one, and they seem to work fine to. You’ll have to experiment with this yourself if
you find songs that should use digi-drums, or mail LeOnArD! Another uninteresting value,
$001e8480, or 2000000, which seems to indicate this is indeed an Atari tune. Then two
bytes, telling us the tune is operating at a frequency of 50 Hz. Lastly an additional six bytes
of zero data.

Right, you with me so far? It’s just a question of slowly going through the file and check that
everything is in order and corresponds to the information we have. Of course it is in order,
otherwise the file wouldn’t work in Winamp, but I want to make sure for myself. Now comes
some text again, according to Leonard’s page, these are the song name, author name and
song comment.

The data is in null terminated string format. This means the strings can be variable in length,
and ends with the value zero. Quite true, after each little string, we can see zeroes shining
through. After these strings, the real sound data begins, also of unknown length. However,
since we know that there are 3050 frames of data, and each frame holds 16 bytes of sound
data, there are 3050 × 16 = 48800 bytes of data here, this calculation also seems correct
since this is roughly the file size. At the end, there are also four bytes forming the string
"End!".

Listing 2. Hex dump of the end of jamblv1.ym
 0000be80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
0000be90 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
0000bea0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
0000beb0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
0000bec0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
0000bed0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
0000bee0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
0000bef0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
0000bf00 45 6e 64 21 |End!|
0000bf04

So what do we really need here? Two things, the number of frames, to know how long the
music file is, so we know when to terminate play, or loop the song, and the start address of
the music data. We know the address of the number of frames, so that’s easy to just store in
a variable. Getting to the music data is trickier, since we don’t know exactly where it is. Sure,
we can hexedit the file and then hardcode the address into the program, but a more general
way of finding the music start data would be nice, so that we easily can play many different
.ym files without having to check the start address of the sound data for each file.

What we want is to get to the end of the three text strings, because this is where the sound
data begins (if you don’t have any digi-drums). To do this, we put ourselves at the beginning
of the text field, which always start at the same place, and then we check each byte for a
zero, since this means the end of a string, and do this three times. In so doing, we will have
passed by all the three text strings, like so

 move.l #ym_file, a0 ; start of ym file
 move.l 12(a0), frames ; store number of frames
 add.l #34, a0 ; beginning of text

song_name
 cmp.b #0, (a0)+ ; search for 0
 bne song_name
comment
 cmp.b #0, (a0)+ ; search for 0
 bne comment
song_data
 cmp.b #0, (a0)+ ; search for 0
 bne song_data
 move.l a0, music ; skipped 3 zero, store address

Now we have the length of the tune in frames, and the start address for the sound data in
music. What was that about interleaved data? The thing is, that many registers of the sound
chip are all zero. In order to compress better, it would be nice to have all these zeros in one
long row. Therefore, the data is not presented in the order it’s supposed to be inserted in the
sound chip, rather, the data is presented one full register after another. Thus, in our file,
there is 3050 bytes of register 0 data, then 3050 bytes of register 1 data and so on.

When we put the sound data in the yammy, we have to add the number of frames for each
input. In this way, we will first input data from register 0, and then we skip the number of
frames to reach the data for the next register and so on. Here’s the entire code, the code for
the VU bars has already been discussed and is only included here for fun, so there is very
little new code

 jsr initialise

 move.l #palette, a0 ; pointer to palette
 movem.l (a0)+, d0-d7 ; palette in d0-d7
 movem.l d0-d7, $ff8240 ; apply palette

 move.l #ym_file, a0 ; start of ym file
 move.l 12(a0), frames ; store number of frames

 add.l #34, a0 ; beginning of text

song_name
 cmp.b #0, (a0)+ ; search for 0
 bne song_name
comment
 cmp.b #0, (a0)+ ; search for 0
 bne comment
song_data
 cmp.b #0, (a0)+ ; search for 0
 bne song_data

 move.l a0, music ; skipped 3 zero, store address

 move.l $70, -(a7) ; backup $70
 move.l #main, $70 ; start main routine
 move.w #7, -(a7)
 trap #1
 addq.l #2, a7 ; wait keypress
 move.l (a7)+, $70 ; restore $70

 jsr restore

 clr.l -(a7)
 trap #1 ; exit

main
 movem.l d0-d7/a0-a6, -(a7) ; backup registers

 move.l music, a0 ; pointer to current music data
 moveq.l #0, d0 ; first yammy register
play
 move.b d0, $ff8800 ; write to register
 move.b (a0), $ff8802 ; write music data
 add.l frames, a0 ; jump to next register in data
 addq.b #1, d0 ; next register
 cmp.b #16, d0 ; see if last register
 bne play ; if not, write next one

 addq.l #1, music ; next set of registers
 addq.l #1, play_time ; 1/50th second play time

 move.l frames, d0
 move.l play_time, d1
 cmp.l d0, d1 ; see if at end of music file
 bne no_loop
 sub.l d0, music ; beginning of music data
 move.l #0, play_time ; reset play time
no_loop
 jsr vu_bars ; paint the vu bars

 movem.l (a7)+, d0-d7/a0-a6 ; restore registers
 rte

; put in VU bars
vu_bars
 move.l $44e, a0 ; get screen address
 add.l #160*199-(15*2)*160, a0 ; bottom area of screen
 move.l #bar, a1 ; point to bar colours

 rept 15 ; 15 max volume
 movem.l (a1)+, d0-d1 ; VU bar colour in d1-d2
 movem.l d0-d1, (a0) ; first VU bar
 addq.l #8, a0 ; next VU bar
 movem.l d0-d1, (a0) ; second VU bar
 addq.l #8, a0 ; next VU bar
 movem.l d0-d1, (a0) ; third VU bar
 add.w #320-16, a0 ; two lines down, two bars left
 endr

; delete VU bars depending on volume
 move.l $44e, a0 ; get screen address
 add.l #160*199-(15*2)*160, a0 ; bottom area of screen

 moveq.l #0, d0 ; clear d0
 move.b #8, $ff8800 ; chanenl a volume
 move.b $ff8800, d0 ; put volume in d0
 jsr del_bar

 moveq.l #0, d0 ; clear d0
 move.b #9, $ff8800 ; channel b volume
 move.b $ff8800, d0 ; put volume in d0
 add.l #8, a0 ; next VU bar
 jsr del_bar

 moveq.l #0, d0 ; clear d0
 move.b #10, $ff8800 ; channel c volume
 move.b $ff8800, d0 ; put volume in d0
 add.l #8, a0 ; next VU bar
 jsr del_bar

 rts

del_bar
; screen address of top line in a0
; volume in d0, gets detroyed
 move.l a0, -(a7) ; backup a0
 move.l a1, -(a7) ; backup a1
 and.b #%1111, d0 ; keep only lowest 4 bits

 move.l #delete, a1 ; beginning of delete blocks
 mulu #12, d0 ; length of one delete block
 add.l d0, a1 ; skip some delete instructions
 jmp (a1) ; jump to correct delete position

delete
 rept 15
 clr.l (a0) ; clear two bit planes
 clr.l 4(a0) ; clear two bit planes
 add.l #320, a0 ; hop two lines down
 endr

 move.l (a7)+, a1 ; restore a1
 move.l (a7)+, a0 ; restore a0
 rts

 include initlib.s

 section data
music dc.l 0 ; address of music data
frames dc.l 0 ; how many frames of music data
play_time dc.l 0 ; how many VBL's has elapsed

ym_file incbin jamblv1.ym

bar
; colour data for each line of VU bar
 dc.w $00ff, $00ff, $00ff, $00ff
 dc.w $0000, $00ff, $00ff, $00ff
 dc.w $00ff, $0000, $00ff, $00ff
 dc.w $0000, $0000, $00ff, $00ff
 dc.w $00ff, $00ff, $0000, $00ff
 dc.w $0000, $00ff, $0000, $00ff
 dc.w $00ff, $0000, $0000, $00ff
 dc.w $0000, $0000, $0000, $00ff
 dc.w $00ff, $00ff, $00ff, $0000
 dc.w $0000, $00ff, $00ff, $0000
 dc.w $00ff, $0000, $00ff, $0000
 dc.w $0000, $0000, $00ff, $0000
 dc.w $00ff, $00ff, $0000, $0000
 dc.w $0000, $00ff, $0000, $0000
 dc.w $00ff, $0000, $0000, $0000
 dc.w $00ff, $0000, $0000, $0000

palette
 dc.w $000, $023, $023, $024, $024, $025, $026, $026
 dc.w $027, $027, $227, $327, $427, $527, $627, $727

[image: tutorial 14 screenshot]

Figure 22. Music

I start off with a normal setup, then read in the music data as described previously and start
the main routine. The main routine here has the actual routine for playing the tune, and the
rest of the code is just VU bars.

First, make a0 point to the current music data, this is somewhere in the music file (on a
number of frames boundary), then put the yammy register number in d0. The real routine for
actually getting the sound data into the yammy is very compact. d0 holds the number of the
register to manipulate, putting that in $ff8800 lets us manipulate the register in question,
then I just put in the music data. After that, it’s a question of adding the number of frames to
the music pointer, in order to point to the next register. Increment d0 to point to the next
register, and do this 16 times, one time for each register. If you don’t remember about the
sound chip, recheck tutorial 13.

Next I increment the music pointer, so that it points to the beginning of the next sound data
set, and increase the number of played frames by one. The last part of the main routine
checks to see if the number of played frames equals the number of frames, if this is so, I
subtract the number of frames from the music pointer. This makes the music pointer point to
the beginning of the music data again. The play time also needs to be reset of course, finally,
a jump to the VU routine, just for the visual effect. Not to complex when you think about it,
actually, I managed to get it right on the first compile…​ almost, I had a slight offset error.

The routine should work for any and all YM6 version files without anything fancy (digi-drums
etc), and perhaps even with some fancy stuff. I don’t really know. Unfortunately it will not
play any other ym versions, you’ll have to work that out yourself. In order to get any music
you want from any Atari source, you can use SainT to record the music in .ym format, it’s
that simple.

With this routine, you could make yourself an .ym file player for the Atari. As the program is
now, it’s really crappy, there is no error reporting of any kind for starters. Perhaps some
tunes really are in 60 Hertz, then they would play wrongly, or perhaps the file is something
other than YM6 probably resulting in a crash. You should add some error reporting yourself.

One nice thing to do with this is to just hook up the music to the VBL, then drop out of the
program (not waiting for a key press nor restoring the VBL). The music will still be playing
and you can go on coding. This is very unstable though, and doing this in the GEM desktop
will probably get you an immediate crash, doing this in Devpac will probably get you a crash
when you compile anything. It’s just an idea to get you going.

On Fading To Black

On Fading To Black

 2002-03-28 (last edition of the initial revision)

I wish for this night-time

to last for a lifetime

The darkness around me

Shores of a solar sea

Oh how I wish to go down with the sun

Sleeping

Weeping

With you

~ Nightwish Sleeping Sun

It has occurred to me that by striving ever forward, we’ve forgotten to speak about some
basic things, so for this tutorial and the next one, we’ll be taking a step back and reviewing
some things. You may have guessed these techniques yourself, but it never hurts to have it
spelled out. Also, I thought I’d share some new thoughts on development, we’ll take that
first.

Most of the source for the tutorials in the past I’ve actually written in Devpac on a real Atari,
but it has now become clear to me that developing in Windows on an IBM compatible is
easier and more efficient. I got the tip over at http://www.atari-forum.com/, a discussion forum for
all topics Atari (where I’m one of the moderators for the coding section, yay). Have one
"launcher file" with only one line

 include whateveryoursourcename.s

By doing this, you’ll assemble any source files you want, and you can edit those source files
outside of Devpac, and then assemble them in Devpac. When I wrote this tutorial, I had a file
named _WRAP.S that had the line include tut15.s in it. Then I used Ultraedit (my editor of
choice) to edit tut15.s, I also had Devpac running under STEem. Whenever I felt like
assembling my source, I just saved in Ultraedit, ALT+Tab-bed into STEem and hit ALT+a to
assemble my source; smooth and easy.

Speaking of Ultraedit, there is a topic going on over at http://www.atari-forum.com/viewtopic.php?t=946
to try and work out good syntax highlighting for Atari assembly in Ultraedit (http://www.ultraedit.com/).
Wow, that’s a lot of various things you wouldn’t have seen pop up in a tutorial from say 1994.
Now onto the serious stuff.

The palette is an extremely powerful thing when you want to change colours quick and easy.
Unfortunately it has the obvious limitation of not changing the pixels. Using the palette you
can black out the screen without erasing the contents (by setting all colours to black), make
things pulse (by incrementing and decrementing colour intensity) or wait with displaying a
picture. Say you want to calculate a big fractal, just set the palette to all 0, calculate your
fractal, then whip in the palette to display the result. The effect will be that no one will see
you draw the fractal, only the final result will be shown.
As we’ve been through before, there are 16 colours in the palette, the first one being the
background colour, located at $ff8240. Each colour is a word long, making the palette end at
$ff825e. Each word is built up like this

 00000RRR0GGG0BBB

The first three bits control blue intensity, then there’s a zero bit, the next three bits control
green intensity, a zero and the final (non-zero) three bits control red intensity. The maximum
value you can get out of three bits is 8, and since the colour intensities are at 4 bit
boundaries, they are very easy to access in hex (since each character in hex mode is a 4 bit
quantity). Thus $700 means max intensity of red and zero intensity for green and blue, $444
means medium intensity for all three colours.

When they built the STe, they thought that it would be nice to have more colours in the
palette, and indeed, it’s easy to just add an additional bit since that would still have the
palette on a 4 bit boundary, making each colour range from 0-15. However, there was a
problem, they could not add a bit in the beginning and just shift the other bits to the left,
since that would mean all old palette values would in effect be shifted left one bit creating an
entirely different value than was originally intended.

The solution to this problem is cunning, but unfortunate. They added the least significant bit
where the zero bit used to be. This maintains backwards compatibility, and adds 8 new
possible colour intensities. So the STe palette looks like this

 0000rRRRgGGGbBBB

This means that $700 is still (almost) maximum intensity of red. What in the memory is
perceived as the most significant bit, is in palette terms the least significant bit. This sounds
very confusing perhaps, but just picture moving the uppermost bit of each colour intensity
first. Let’s say then that we want the intensity between $100 and $200, this would be colour
$900, since that would be

 0000rRRRgGGGbBBB
0000100100000000

Which we can interpret as

 0000RRRrGGGgBBBb
0000001100000000

Thus, when using the STe palette, we must think about the fact that the most significant bit
for each colour, is in actuality the least significant bit. The number order for intensities, from
lowest to highest is 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F. So if you use colour $fff, the
STe will interpret this as intensity 15 for all colours, and the ST will interpret it as colour
intensity 7, since the ST doesn’t care about whether the fourth bit is set or not.

That should be all there is to the palette, making full utilization of it will be up to each one. In
order to do something I thought we’d just do a simple fade in effect. Fading in a picture is so
much nicer than just whipping it onto screen. Fading out is also much nicer than just zapping
it away, you can also fade to white and make the screen sort of flash away.

What we want is to begin with a black palette and pixel data on the screen, then increment
the colour values of the palette until they reach the values intended for the picture. In order
to keep things simple, I opted to skip the STe palette since there’s lots of shifting involved
whenever you want to use it. So the fade will only have a maximum of 7 intensities to work
with, making it a pretty bad looking fade effect.

We’ll need a copy of the original palette, and a current palette which we increment until it
reaches the original. It would be tempting to compare the real palette to the current one and
add $111 (one intensity of each colour) if they don’t match, but that won’t work. Say one
colour is supposed to be $100, if we compare our current $000 with that, they don’t match,
so we add $111 making the current colour $111, which is more than $100. Instead, we must
compare each red, green and blue value individually. This can easily be done by just masking
off all bits except the three controlling the intensity for either red, green or blue.

 move.l (a7)+, a1 ; restore a1

 and.w #%011100000000, d0 ; mask off all but red values
 and.w #%011100000000, d1 ; mask off all but red values

 cmp.w d1, d0 ; see if red is correct intensity
 beq red_fin ; if not ...
 add.w #%000100000000, d1 ; ... add one intensity of red
red_fin

Let’s assume d0 holds the real colour, and d1 holds the temporary. All bits except the ones
controlling red are masked off, then values compared. If they do not match, add one to the
value. The value to add will be different depending on which intensity we check for, since
different intensities begin at different bit positions. That’s pretty much it, here’s the entire
source

 section text

 jsr initialise

 movem.l picture+2, d0-d7 ; put picture palette in d0-d7
 movem.l d0-d7, pal ; copy palette to pal

 movem.l temp_pal, d0-d7 ; put current palette in d0-d7
 movem.l d0-d7, $ff8240 ; apply current palette (all 0)

 move.w #2, -(a7) ; get physbase
 trap #14
 addq.l #2, a7

 move.l d0, a0 ; a0 points to screen memory
 move.l #picture+34, a1 ; a1 points to picture

 move.l #7999, d0 ; 8000 longwords to a screen
loop
 move.l (a1)+, (a0)+ ; move one longword to screen
 dbf d0, loop

 move.l $70, old_70 ; backup $70
 move.l #main, $70 ; start main routine

 move.w #7, -(a7) ; wait keypress
 trap #1
 addq.l #2, a7

 move.l old_70, $70 ; restore $70

 jsr restore

 clr.l -(a7)
 trap #1

main
 move.w sr, -(a7) ; backup status register
 or.w #$0700, sr ; disable interrupts
 movem.l d0-d7/a0-a6, -(a7) ; backup registers

 add.l #1, counter ; increment counter variable
 cmp.l #15, counter ; only execute main sometimes
 bne do_nothing ; skip instructions
 clr.l counter ; reset counter

 move.l #pal, a0 ; a0 points to values to reach
 move.l #temp_pal, a1 ; a1 points to current values

 rept 16 ; do for each color
 jsr check_red ; see if red intensity should increase
 jsr check_green ; see if green intensity should increase
 jsr check_blue ; see if blue intensity should increase
 add.l #2, a0 ; point to next color
 add.l #2, a1 ; point to next color
 endr

 movem.l temp_pal, d0-d7 ; put current palette in d0-d7
 movem.l d0-d7, $ff8240 ; apply current palette

do_nothing
 movem.l (a7)+, d0-d7/a0-a6 ; restore registers
 move.w (a7)+, sr ; restore status register
 rte ; finished interrupt

check_red
 move.w (a0), d0 ; move one final color into d0
 move.w (a1), d1 ; move one temp color into d1

 and.w #%011100000000, d0 ; mask off all but red values
 and.w #%011100000000, d1 ; mask off all but red values

 cmp.w d1, d0 ; see if red is correct intensity
 beq red_fin ; if not ...
 add.w #%000100000000, (a1) ; ... add one intensity of red
red_fin
 rts

check_green
 move.w (a0), d0 ; move one final color into d0
 move.w (a1), d1 ; move one temp color into d1

 and.w #%000001110000, d0 ; mask off all but green values
 and.w #%000001110000, d1 ; mask off all but green values

 cmp.w d1, d0 ; see if green at correct intensity
 beq green_fin ; if not ...
 add.w #%000000010000, (a1) ; ... add one intensity of green
green_fin
 rts

check_blue
 move.w (a0), d0 ; move one final color into d0
 move.w (a1), d1 ; move one temp color into d1

 and.w #%000000000111, d0 ; mask off all but blue values
 and.w #%000000000111, d1 ; mask off all but blue values

 cmp.w d1, d0 ; see if blue at correct intensity
 beq blue_fin ; if not ...
 add.w #%000000000001, (a1) ; ... add one intensity of blue
blue_fin
 rts

 include initlib.s

 section data

old_70 dc.l 0
picture incbin sleepsun.pi1
counter dc.l 0

 section bss
pal ds.w 16
temp_pal ds.w 16

[image: tutorial 15 screenshot]

Figure 23. Fading

First I save the palette of the picture in a storage space, then I put the temporary palette in,
since the temporary palette is initialised to all 0’s, this has the effect of blacking out the
screen. Next I load up the picture as described in tutorial 6 and set up
the main routine.

The counter code is for delay purposes; otherwise the fade effect would hardly be visible. I
make a0 point to the palette to reach, and point a1 to the temporary one. Then I check the
individual intensities, and add 2 to each pointer in order to point to the next colour, repeating
this for the number of colours in the palette, namely 16.

You will notice that the check sub-routines are a bit different than the one described above, I
add to the value pointed to by a1, which is the current palette. It may be considered slightly
bad program habit to just assume that a1 points to the current palette like that, but coding
demos and assembly in general depends on tight kept code that knows what it’s doing.
Besides, the tutorials aren’t really for teaching you how to make good code; they are
intended as basic introductions to various coding techniques.

That’s that, one easy effect achieved by manipulating the palette. If you want to fade to
white, just set the temporary palette to the real palette, and increment until you reach $777.
If you want to experiment, I suggest trying to implement the effect with a STe palette
instead, the included picture has a STe palette so it’s ready to go. This should involve shifting
the fourth bit of each colour intensity down as the first when adding to the colour intensity,
and then shift it back. For the next tutorial, I think we’ll handle full screen scrolling, without
moving any picture data!

EPUB/img/scancode.gif
/59/60/61/62/63/64/65/66/67/68/

112 (3|4 (5]6 |7 |8 9 | 10| 11]12 13|41|14 98 | 97 99 (100 [101 102
15 | 16(17|18 19| 20| 21 | 22|23|24|25|26| 27 83| |82 72|71 [103[104]105| 74

29 |30|31|32|33|34]| 35| 36| 37| 38| 39| 40| 2 |43| |75|80| 77| |106|107|108] 78
42 [96|44 45 46| 47]148| 49| 50| 51| 52| 53| 54 109110111

©

N

11
56 57 58 112 113

EPUB/img/tutorial-07-font.gif
=R DS
SNV AN
= o ealIE S
gD o> QTS
SNPSF
i GBI
| &S
B =
=0 e [=)
i F A0S

BB%

EPUB/img/tutorial-11-autumn.gif

EPUB/img/tutorial-05-screenshot.png

EPUB/img/tutorial-10-screenshot.png

EPUB/img/tutorial-11-mask.gif

EPUB/img/tutorial-08-screenshot.png
NG 8 PIREL

EPUB/nav.xhtml

Table of Contents

		Foreword

		On The Theory Behind Programming

		Of The Workings Of Devpac 3 And The Realisation Of Some Code

		Of Various Things Mystic And Important, Mainly Concerning The Art Of Understanding Digits And Performing Traps

		Of The Ways Of Addressing Memory

		Of The Workings Of The Graphics Memory And Minor Skills In Branching

		Of Seeing Behind The Curtain Of An Execution And Getting Intimate With Files

		On Scrollers

		Of Scrolling 8 Pixels Per VBL Using Double Buffer

		Of Revealing The Unseen And Expanding Our Consciousness Without The Use Of Illegal Drugs

		Of Lighting A Candle (And Casting A Shadow)

		Of Making The Mountain Move To Mohammed

		Of Controlling The Puppets

		Of Hearing That Which Is Spoken

		Of Using The Gramophone

		On Fading To Black

		Table of Contents

		Start of Content

EPUB/img/tutorial-09-screenshot.png

EPUB/img/tutorial-12-screenshot.png
XEN
SRR
BESIGRER BY
THE BITHRP BROTHERS

EPUB/img/tutorial-02-screenshot.png

EPUB/img/tutorial-13-screenshot.png

EPUB/img/tutorial-03-screenshot.png

EPUB/img/tutorial-14-screenshot.png

EPUB/img/tutorial-11-and.gif
a

EPUB/img/tutorial-07-screenshot.png
CoOOL SCR

EPUB/img/tutorial-11-screenshot.png

EPUB/img/tutorial-11-block.gif

EPUB/img/tutorial-06-monst.gif
trap 81
addg. 1 uS,a?
nove.w